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Abstract

Fitness trackers are undoubtedly gaining in popularity. As fitness-related data are per-
sistently captured, stored, and processed by these devices, the need to ensure users’
privacy is becoming increasingly urgent. In this paper, we apply a data-driven approach
to the development of privacy-setting recommendations for fitness devices. We first
present a fitness data privacy model that we defined to represent users’ privacy pref-
erences in a way that is unambiguous, compliant with the European Union’s General
Data Protection Regulation (GDPR), and able to represent both the user and the third
party preferences. Our crowdsourced dataset is collected using current scenarios in
the fitness domain and used to identify privacy profiles by applying machine learning
techniques. We then examine different personal tracking data and user traits which
can potentially drive the recommendation of privacy profiles to the users. Finally,
a set of privacy-setting recommendation strategies with different guidance styles are
designed based on the resulting profiles. Interestingly, our results show several seman-
tic relationships among users’ traits, characteristics, and attitudes that are useful in
providing privacy recommendations. Even though several works exist on privacy
preference modeling, this paper makes a contribution in modeling privacy prefer-
ences for data sharing and processing in the IoT and fitness domain, with specific
attention to GDPR compliance. Moreover, the identification of well-identified clus-
ters of preferences and predictors of such clusters is a relevant contribution for user
profiling and for the design of interactive recommendation strategies that aim to bal-
ance users’ control over their privacy permissions and the simplicity of setting these
permissions.
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1 Introduction

Preserving the privacy of users in the context of the Internet of things (IoT) is a
growing concern. In particular, this is due to the increasing number of third party
(TP) applications and personal IoT devices, and the increase in data sharing among
TPs, which make privacy management more complex in the IoT. These developments
not only increase privacy concerns but also make setting one’s privacy preferences an
increasingly complex task.

Since the field of IoT is very broad, this study focuses on personal tracking devices,
which are a prominent focus in privacy research because they collect vast amounts
of personal tracking data. Specifically, we will study the case of fitness trackers (e.g.,
Fitbit) as they are known to employ around-the-clock monitoring of users’ activity.

While several frameworks and applications for managing privacy preferences have
been proposed recently (e.g., Lee and Kobsa 2017; Tsai et al. 2017), most of them do
not specifically concern IoT tracking data and data sharing among TPs. Building on
privacy management studies in the field of ubiquitous computing, this paper aims to fill
this gap by modeling users’ privacy preferences and recommending privacy settings
in a fitness IoT scenario.

The features for privacy preference modeling considered in this paper are based
on the Privacy Preference for IoT ontology (PPIoT) (Sanchez et al. 2019) with the
aim to unambiguously identify privacy preferences and data sharing permissions for
both the user and TPs. The vocabulary is based on well-established ontologies for the
description of privacy preferences and IoT resources; moreover, it takes into account
the newly adopted EU General Data Protection Regulation (GDPR) (The European
Parliament and the Council of the European Union 2016), which represents the most
important change in data privacy laws in the last twenty years. While the GDPR is
a significant stride toward user empowerment and control over their personal data, it
requires users to make explicit decisions for every individual privacy setting. In the IoT
scenario, the effort required for such explicit control can be exhaustive, especially when
considering the number of devices, applications, and data collection practices that must
be given individual consent by the user. Hence, our approach aims to increase its ease of
use by combining the GDPR principles with the concept of privacy recommendation.

For the prediction and recommendation of user privacy preferences, we adopt a
well-established two-step approach in user modeling. First, we aim to identify user
profiles that can represent the vast diversity of privacy preferences through the use
of machine learning clustering algorithms. Then, we investigate how to exploit users’
privacy preferences on tracking data and personal traits to drive the recommenda-
tion of which profile best describes each user by using a tree-based classifier. The
main recommendation-driving factors that we took into account include users’ pri-
vacy behavior and attitudes, the negotiability of their preferences (cf. Tsai et al. 2017),
as well as social influence and sociability (Wu et al. 2017), users’ privacy preference
feedback (cf. Tsai et al. 2017), and users’ attributes (cf. “side information” Rafailidis
and Nanopoulos 2016) such as demographics.

The input for our privacy preference modeling efforts comes from a crowdsourcing
study on the Amazon Mechanical Turk platform. To collect a sample of fitness IoT per-
mission settings, we simulate a fitness app prototype built to provide a semi-realistic
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environment, and a subsequent questionnaire. In machine learning and IoT, crowd-
sourcing has been successful at gathering input from a diverse set of users. While it
does not always provide reliable output, we employed several selection criteria and
attention check questions to ensure that we collected high-quality data from a sample
that represents the fitness tracking population as accurately as possible.

Our results indicate that users’ privacy attitudes (in particular privacy concerns and
trust in the third party), their social behavior (in particular sociability), and the nego-
tiability of permissions for tracking data when varying risk level or benefit (mainly
sleep tracking data and phone permissions) can drive the recommendation of pri-
vacy preferences. We show that there are semantically relevant relationships between
these drivers of the recommendations and the modeled privacy preference categories.
However, we also demonstrate that direct privacy profile item questions (i.e., users’
willingness to share their minutes of activities, provide their first name, allow access
to their photographs, and share their tracking data for social purposes) provide even
better predictors of their preferences.

Moreover, we show the applicability of these findings by developing recommenda-
tion strategies that simplify the task of privacy permission setting, with different levels
and types of user intervention. The current application environment for our findings
is our personal data manager (PDM), a framework designed to support users in man-
aging and controlling privacy preferences with respect to third parties (Torre et al.
2016¢, 2018). In the paper, we will provide details about the integration of privacy
recommendations within the PDM.

The main contribution of the proposed approach is to harness users’ personal track-
ing data permission preferences and other user traits to build user profiles and predictors
of such profiles in the fitness domain. The aim is to suggest privacy settings for track-
ing data that fit the user’s preferences, are GDPR compliant, and reduce the effort
for users to set such permissions, thereby maintaining meaningful control over their
preferences without unnecessary burden.

Our work applies directly to personalized fitness services. The issue of balancing
simplicity of privacy preference setting with control of personal data processing is
crucial in this domain. Based on our previous work on personal data management
(Sanchez et al. 2019; Torre et al. 2016c¢), privacy risks (Carmagnola et al. 2014; Torre
etal. 2018), and privacy profiling (Bahirat et al. 2018; He et al. 2019), the current work
is novel in the following aspects: It applies the privacy profiling approach to fitness IoT
(an unexplored application area), it applies the privacy profiling approach to settings
data (previous work used the approach on responses to scenarios), and it is also the first
work to subsequently predict cluster assignments using privacy-related questions and
also indirect questions. Our findings about the predictors of privacy preferences in the
specific field of fitness trackers can be used to support privacy-aware user modeling.
The data model we defined for the fitness domain and the related dataset is based on
popular fitness trackers; as such, it has a wide coverage of tracking data that likely
includes those used by most of the personalized fitness services.

However, it is worth noting that beyond our contribution to the domain of personal-
ized fitness services, we describe a generic method to develop user profiles and a series
of recommendation strategies for privacy management. While the PPIoT vocabulary is
specifically targeted to IoT, it can be substituted for other privacy management ontolo-
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gies. Moreover, while we demonstrate our approach in the context of a fitness tracker,
it is designed to be generalizable to other data-intensive user-centric applications.
The remainder of this paper is structured as follows. The next section presents the
background and related work of this study. Section 3 discusses our research method-
ology together with our PDM framework. We derive our data model for the fitness
domain in Sect. 4. Our method for data collection is presented in Sect. 5. The privacy
profile models and their respective drivers are discussed in Sects. 6 and 7, respectively.
Our recommendation strategies are presented in Sect. 8. Finally, the limitations and
future work, and the concluding remarks are discussed in Sects. 9 and 10, respectively.

2 Background and related work

In this section, we first analyze the state-of-the-art literature on privacy management
in mobile and IoT frameworks, and then we describe privacy preference modeling
and the recommendation approaches. Finally, we discuss the representation of privacy
preferences in light of the currently enforced GDPR.

2.1 Privacy management

Mobile privacy permission systems have been well studied in the literature. However,
they do not properly cover the scope of new IoT devices, such as fitness trackers, that
expand and extend the services and personal data that must be managed. In this section,
we first provide background information about privacy permission management in
mobile systems, since they serve as groundwork for the IoT context. Then, we discuss
related work on frameworks for privacy management in the IoT.

2.1.1 Permission management in mobile systems

Studies in mobile privacy (e.g., Felt et al. 2012) have demonstrated that the mobile
interfaces of both Android and iOS lack the potential to provide the necessary user
privacy information and control (Lin et al. 2014). Several solutions have been pro-
posed to improve mobile privacy protection and offer users more privacy control (e.g.,
Beresford et al. 2011). Some of these suggestions have since been taken into account
to improve privacy management of current mobile systems (i.e., starting from Android
6.0+ and iOS 5.0+).

The Android permission systems can be mainly categorized as the Ask On Install
(AOI) and Ask On First Use (AOFU) privacy models (Tsai et al. 2017; Wijesekera
et al. 2017). In AOI' (Android 5.9 and below), the permissions are asked in bulk
before installing a TP app. The user’s option is only to allow or deny all, which affords
less privacy control. Also, research shows that few users read and pay attention to the
install time permissions, and even fewer understand their meaning (Felt et al. 2012;
Kelley et al. 2012). These issues made room for TP apps that manage app privacy,
such as Turtleguard Tsai et al. (2017) and Mockdroid Beresford et al. (2011).

1 https://support.google.com/googleplay/answer/6014972?co=GENIE.Platform %3DAndroid&hl=en.
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On the other hand, the AOFU model (Tsai et al. 2017) (Android 6.0 and above)
asks permissions the first time an app uses a specific feature that needs the respective
permission. In this case, users grant the permission during the actual provision of the
service and will be able to weigh their willingness to share against the utility of the app.
Users can also revisit and review permissions in their phone privacy settings for each
app. This model makes users more informed and gives them more control (Fu et al.
2014). Moreover, it has been shown that interactive notifications are more efficient in
informing users about access requests (Fu et al. 2014). The distinction of these two
models is worth noting since as of July 2018, 34% of the Android users were still
using the AOI model?.

In terms of privacy management, iOS has used the AOFU model for location per-
mission since i0S version 5.000%, with a more comprehensive rollout in iOS 6.0 and
onwards (Almuhimedi et al. 2015). Although iOS is not open source like Android, this
has not stopped researchers from finding ways to improve its privacy-setting mecha-
nism. For example, ProtectMyPrivacy is an app specifically designed for jailbroken
iOS devices that preserves user privacy by substituting anonymized data for user data
(Agarwal and Hall 2013). Although jailbreaking is deemed legal, it is not advisable
to do so as jailbroken iOS devices can be used to install pirated apps that might con-
tain privacy risks. Privacy managers specifically built for non-jailbroken iOS devices
also exist, but they have reduced functionality. For example, PiOS (Egele et al. 2011)
is a privacy manager which only has the function to check if the installed iOS apps
have committed privacy breaches. Similarly, Data Privacy Pro* can only act on users’
private photographs, videos, and notes.

2.1.2 Frameworks for privacy management

Several existing frameworks involve a personal data manager for privacy management.
For instance, ipShield (Chakraborty et al. 2014) is a context-aware privacy framework
for mobile systems that provides users with great control over their data and inference
risks. My Data Store (Vescovi et al. 2015) offers a set of tools to manage, control,
and exploit personal data by enhancing an individual’s awareness regarding the value
of their data. Similarly, Databox (Chaudhry et al. 2015) enables individuals to coor-
dinate the collection of their personal data and make those data available for specific
purposes. However, these data managers do not include user privacy profiling and
recommendation in the complex IoT environment.

khealth is an IoT framework based on a personalized digital health care information
system that protects users from TP adversaries (Sharma et al. 2018). Privacy can also
be protected by providing different anonymity levels of data that are given to the TPs.
However, it may not be possible to implement the most effective privacy standards
such as data obfuscation due to numerous trade-offs and restrictions, especially in the
health care and fitness domain.

2 https://developer.android.com/about/dashboards/index.html.

3 https://developer.apple.com/library/content/releasenotes/General/ WhatsNewIniOS/ Articles/iOS6.
html#//apple_ref/doc/uid/TP40011812-SW1.

4 https://itunes.apple.com/us/app/data- privacy-manager- pro-security-suit-to-lock-my-private/
1d625761168mt=8
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2.2 Privacy preference modeling

The study of privacy preferences is a challenging task, given the diversity of users’
preferences, context conditions, and regulations. Kobsa (2001) suggested that privacy
settings should be dynamically tailored to both legislative rules and individual user
needs, since different factors affect user preferences. This is also the core principle of
our approach in this paper.

In ubiquitous computing, the issue of privacy management has been studied since
the early 1990s (Bellotti and Sellen 1993). In the 2000s, Brar and Kay (2004), Kay
and Kummerfeld (2006), and Kay et al. (2002) focused their research on supporting
user scrutiny and control over the information held by applications. In this light, Per-
sonis (Kay and Kummerfeld 2006; Kay et al. 2002) is a user modeling framework that
ensures the user can maintain control at different levels (e.g., source identity, source
type, the processes used to gather the user data, the way such information will be
used to provide personalized services). Based on the same principle, Secure Personal
Exchange (SPE) (Brar and Kay 2004) is a framework for personalized services and
an example of privacy modeling and management in ubiquitous computing. It imple-
ments machine-processable policies based on the P3P> vocabulary to provide tools for
representing and storing user preferences as subsets of user models (personas), each
intended for use by particular applications. Even though the P3P became obsolete due
to a lack of adoption, most of its main concepts are still being used for data protection
regulations.

Context-aware privacy modeling has shown to enhance the accuracy of users’ pri-
vacy preference prediction (Lee and Kobsa 2017; Wijesekera et al. 2017). Context is
defined as the situation (e.g., what, when, who, where, how, etc.) under which a TP
application requests access to data. The context improves the prediction; for example,
when and under what circumstances the data are collected plays a big role in predict-
ing user preferences (Wijesekera et al. 2017). Likewise, Lee and Kobsa found that the
identity of the information requester (the who context) is an important determinant of
people’s privacy decisions (Lee and Kobsa 2017). Our results confirm this finding.

Leveraging the dataset collected by Lee and Kobsa, Bahirat et al. (2018) applied
a data-driven design methodology to develop a privacy-setting interface and a set of
smart default profiles for Internet of things devices. In the current paper, we use a
similar approach to identify privacy profiles and smart default interfaces. However,
while the goal of Bahirat et al. was to let users pick profiles manually, our current goal
is to further classify users with respect to the profiles in order to give them a person-
alized profile recommendation. Moreover, our current work uses users’ permissions
(collected through our FitPro prototype app, based on the PPIoT and the GDPR) as a
basis for privacy profiles, whereas Bahirat et al. used scenario-based input. Our current
work is thus closer to a real-world implementation.

Preference modeling was also explored to enhance privacy in social networks.
For instance, Facebook users are found to have 6 types of privacy profiles: privacy
maximizers, selective sharers, privacy balancers, self-censors, time savers/consumers,
and privacy minimalists (Knijnenburg 2017; Wisniewski et al. 2014). Moreover, in Wu

5 Platform for Privacy Preferences https://www.w3.org/P3P/.
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et al. (2016), the inclusion of both the influence of the user’s social surroundings (i.e.,
social influence) and the future association and bond with individuals that have similar
preferences (i.e., homophily effect) enhances the modeling of user preferences. These
factors are also included in our study.

In the health/fitness domain, emerging sensors and mobile applications allow people
to easily capture fine-grained personal data related to the long-term fitness goals.
Focusing on tracker data (i.e., weight, activity, and sitting), Brar and Kay (2004)
discovered that users’ preferences vary by sensor [i.e., weight being the most important
(Brar and Kay 2004)]. Also, their study concludes that users want to have control over
their fitness data, and that they would like to have a personal copy of their data.

Modeling location privacy preference has received much attention in the literature,
given the sensitivity of this information (see for instance Almuhimedi et al. 2015;
Assad et al. 2007; Vicente et al. 2011; Xie et al. 2014). Assad et al. (2007) study
users’ preferences regarding the release of location information and provide support
to differentiate their release. Vicente et al. (2011) not only consider location privacy
but also absence and colocation privacy. Moreover, Xie et al. (2014) study location
sharing privacy preferences with respect to different contextual parameters, including
check-in time, companion, and emotion. These studies confirm that users want to
control the privacy of information and that this is specifically important in ubiquitous
environments.

Finally, it is worth mentioning a number of privacy preference modeling frameworks
that use the semantic Web. PPO (Sacco and Breslin 2012) has pioneered modeling
user’s privacy preferences, giving users’ fine-grained control of their preference. A
survey of privacy management approaches using ontologies can be found in Perera
et al. (2016). Our PPIoT ontology (Sanchez et al. 2019) that we adopt to describe
our fitness data privacy model is based on PPO and other well-established ontologies
for the description of preferences and the representation of IoT resources. Details on
related ontologies will be provided in Sect. 4.1.

2.3 Recommendation in privacy management

Enhancing permission settings gives more control to the user, but it also increases
complexity. As the number of applications that the users utilize increases (currently
averaging 35 apps/user Google/Ipsos 2016), the number of permissions per applica-
tion increases (currently averaging 5 permissions per app®), and even the number of
devices users own increases (currently averaging 4 devices per user’), these permis-
sion models will not be enough. Indeed, research shows that burdening the user with
the formidable task of setting each individual permission easily becomes a tedious
task that is prone to errors (Acquisti et al. 2015; Lee and Kobsa 2017; Madejski
et al. 2012). Generally, users are increasingly unable to make decisions about privacy
settings due to limits in their available time, motivation, and their cognitive decision-
making abilities. Moreover, users’ stated privacy preferences are often inconsistent
with their actual behaviors and users are likely to be uncertain about their own privacy

6 http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-play-store/.
7 https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-64-connected-devices/.
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preferences (Lee and Kobsa 2017; Acquisti et al. 2015). In this section, we describe
some of the approaches that have been proposed to solve this problem.

Privacy nudging is an effective method to increase user awareness (Almuhimedi
et al. 2015). Nudging allows users to be informed about both their privacy settings
and how TP applications access their data (Liu et al. 2016). Note, though, that privacy
nudges lack personalization and provide only general recommendation.

Another approach that is more user-centric is user-tailored privacy (Knijnenburg
2017). It models users’ privacy concerns and provides users with adaptive privacy
decision support. This model can be seen as personalized “smart nudges” where the
recommendation is aligned with the user’s privacy preference. User-tailored privacy
aids users in making privacy decisions by providing them privacy-related information
specifically tailored to them and useful privacy control that does not overwhelm them.
However, in practice it is hard to implement a general privacy model—the idea is too
broad and abstract, especially given the diversity of privacy perceptions among users.

The approaches in Lin et al. (2014) and Liu et al. (2016) are closely related to our
approach, but they are limited to mobile systems. The solution in Lin et al. (2014) is
to provide a set of predefined privacy preference configurations. This can be attained
by using machine learning algorithms to predict the best-suited preference settings for
the user. It shows that within the substantial between-user variability of permission
settings there exist some profiles that can collectively describe these diverse settings
with substantial accuracy. These privacy profiles (Lin et al. 2014; Liu et al. 2016,
2014b) are collections of related privacy and sharing rules that correspond to privacy
preferences of similar-minded users (cf. Knijnenburg 2014; Knijnenburg et al. 2013;
Wisniewski et al. 2014; Xie et al. 2014). By identifying the privacy profile that matches
a new user, one can provide decision support by means of a privacy recommendation
(Liu et al. 2016). In Liu et al. (2014b), six privacy profiles were identified based on the
analysis of 4.8 million users’ privacy settings. In a subsequent paper, the authors add
new features (such as the purpose of information and app categories) for modeling user
privacy profiles, as well as privacy nudges that make users more aware of unexpected
data practices from TPs (Liu et al. 2016).

Our two-step approach combines the profile approach and the recommendation
approach and is aimed to maintain a balance between simplicity of setting and per-
sonalization, which allows users to be informed about the profile that is best suited for
them and be recommended settings that are associated with their privacy preferences.
Moreover, in the current paper privacy profiling is studied with specific regard to the
fitness domain, a still unexplored application area.

2.4 General data protection regulation

As of May 25, 2018, the European Union (EU) enforces the General Data Protection
Regulation (GDPR) (The European Parliament and the Council of the European Union
2016) which applies to the storage, processing, and use of subjects’ personal data. The
GDPR applies to all TPs that operate in the EU market or access data of EU residents,
even if they themselves are not established within the EU. The GDPR requires users to
provide explicit consent to privacy options expressed by TPs. This results in a complex
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task for the users, given the number of devices and applications they interact with, each
of which will have a consent procedure which will have to be processed specifically.
Our PDM uses the vocabulary of the PPIoT ontology (Sanchez et al. 2019) which
includes concepts and properties that address the GDPR requirements for the manage-
ment of personal data, including the reason, method, and persistence of data access,
and the maximum retention period of data in the hand of the accessing parties. Besides
PPIoT, other ontologies address GDPR concepts for different purposes. The ontolo-
gies proposed in Palmirani et al. (2018), Pandit et al. (2017, 2018) address the formal
representation of GDPR articles, TP obligations, and provenance modeling, respec-
tively. Another ontology was proposed in Elluri et al. (2018) to represent GDPR rules
concerning cloud data and addressing the obligations of consumers and providers.
Compared to the mentioned ontologies, the PPIoT ontology captures IoT privacy per-
missions more comprehensively and is focused on user privacy preferences.

3 Research methodology
3.1 Personal data manager

As stated in Sects. 1 and 2, previous research on privacy needs and the new GDPR
requirements call for an increase in users’ control over the storage, processing, and
sharing of personal data. Such control is very complex for IoT scenarios, though,
which is why the privacy-setting task must be simplified to accommodate the limited
cognitive abilities of the users and the risk of errors, as discussed in the related works.
Our proposals for supporting users in such a task, while general, are deployed in the
application environment of our personal data manager (PDM) framework described in
detail in various previous works (cf. Torre et al. 2016a,b,c, 2018). PDM is designed
to be an intermediary between the user, her/his devices through their dedicated third
parties (TPs), and other third parties (i.e., fourth parties) that want access to her/his
data (Fig. 1). The PDM is mainly responsible for managing the interaction among
these entities, the access control for TPs (authentication, authorization, privacy policy
evaluation), and the user’s privacy preference settings.

3.2 Research questions

In the intended environment discussed above, the main issue we aim to address is the
following: How can we effectively support users in setting their privacy permissions.
The settings need to be sufficiently granular to be GDPR compliant and to fit users’
real preferences. But they should also be simple enough to allow users to maintain
meaningful control over their settings. Our approach is to provide users semiautomated
interactive privacy recommendations. In this paper, we investigate how the PDM can
recommend personalized privacy profiles in a simple, usable way. To attain this goal,
we formulate four research questions for privacy preference recommendation.

RQ1 How can we formally represent users’ privacy preferences in a way that is
suitable for both the user and the TP?
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Fourth Parties

Ontology
MAIN PROPERTIES

Dedicated hasPersistence

Third Party * hasReason . .

* hasMaxRetentionPeriod
* hasMethod

* hasPriority

¢ allwosNegotiation

* allowsSharingWith

User Devices

-

1

Fig. 1 Personal data manager (PDM) framework

To answer this question, we propose a fitness data privacy model which captures
the general data permissions used by fitness trackers and adopts our PPIoT vocabulary
to handle disputes on different and conflicting privacy terminologies.

RQ2 Is it possible to identify well-defined privacy profiles that can represent the
diversity of users’ privacy preferences?

To answer this question, we conduct an unsupervised machine learning analysis
(clustering) to cluster users’ privacy settings into distinct profiles by recruiting a total of
310 Fitbit users. We collect privacy profile data by developing a fitness app installation
simulator (FitPro) that captures the user privacy permission settings, followed by a
questionnaire. Our dataset is collected through the Amazon Mechanical Turk platform.

RQ3 Are there any privacy profile items or questionnaire items that can be used to
predict which privacy profile best describes a user?

To answer this question, we conduct a supervised machine learning analysis (tree
learning) to find privacy profile items and questionnaire items (i.e., privacy attitude,
negotiability, social behavior, exercise tendencies, and demographics) that best predict
the user profiles from RQ2. Users’ answers to these settings/questions subsequently
allow us to provide them an accurate recommendation of the profile most suitable as
a starting point for their privacy settings.

RQ4 How can we effectively exploit the results to provide privacy profile recom-
mendations?

To answer this question, we develop a series of recommendation strategies and
related user interfaces based on the machine learning results. We aim to integrate
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Semantic Web Approach

Privacy PPloT Ontology

Preference - PPO

Modeling - FIP/GDPR
SOSA/SSN

Fitness Domain Permissions

Fitness (F set) GDPR/FIP (G set)
DEVE!

Permission Smartphone (S set) | Application (A set)
Modeling N Fitbit

i0S Garmin
Jawbone
Misfit

Machine Learning Approach
User Privacy

Profile Create User Finding Triggers for
Modeling Profiles Recommendation
(Clustering) (Classification)

Windows

User Interfaces

User Non-interactive Interactive
Interface

Modeling - Smart Default + Indirect Triggers
* Pick Profile

* Manual « Direct Triggers

Fig.2 Inter-model research work flow

these recommendation strategies within our PDM framework to balance control of
privacy information and simplified management.

The workflow of this study is shown in Fig. 2. First, we describe the privacy prefer-
ence modeling using a semantic Web approach and develop a privacy model for fitness
data in the IoT domain, which answers RQ1. Then, we create user profiles and find
the determiners for prediction, which answers RQ2 and RQ3, respectively. Finally,
we develop recommendation strategies and the related user interfaces based on these
results, which answers RQ4. The layer stack in the figure is based on sequence: Each
layer defines a high-level conceptual model, and the unidirectional links define their
sequential relationships.
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4 Fitness data privacy model

Fitness trackers collect around-the-clock user activity, which puts them among the
IoT devices that capture the most intimate information about their users. This sec-
tion outlines which permissions are asked by a variety of fitness trackers. We then
derive our data model for the IoT fitness domain from this analysis. To address RQ1,
we exploit the vocabulary of the PPIoT ontology to unambiguously represent users’
privacy preferences, including GDPR-based preferences.

4.1 PPloT vocabulary

The Privacy Preference for IoT (PPIoT) ontology (available online®) (Sanchez et al.
2019) has been designed to fill a gap in privacy preference description for the IoT,
by combining and extending existing ontologies for privacy preference and for IoT.
Specifically, PPIoT is based on the Privacy Preference Ontology (PPO?) and the W3C
Semantic Sensor Network Ontology (SOSA/SSNIO); moreover, it addresses the GDPR
requirements (see Sect. 2.4) and incorporates the fair information practices (FIP)
principles and state-of-the-art recommendations for privacy protection in the IoT data
sharing context.

Among the concepts in the PPIoT vocabulary, in this study we refer mainly to those
described below.

(i) Personal data—Dataset in the PPIoT vocabulary, is mapped to the personal data
concept in Art. 4 of the GDPR. It represents the personal data for which privacy
permissions can be expressed. The concept is general enough to be instantiated
in different domains.

(i1) The owner of the personal data—User in the PPIoT, represents the data subject
in Art. 4 of the GDPR.

(iii) The TP that requests to access/process the personal data—FEntity in the PPIoT,
addresses the third party, controller, processor, and recipient in Art. 4 of the
GDPR!!.

(iv) The privacy preference conditions of the user for giving consent to TPs to
access/process her data —Condition in the PPIoT, allows the specification of
conditions for consent using the properties of the condition concept. Figure 1
shows the main condition properties from the PPIoT vocabulary: hasMaxRe-
tentionPeriod, allowSharingWith, etc. Note that the object of these properties is
modeled with further PPIoT concepts, such as the type of entity that requests
access—EntityType in the PPIoT.

In our framework, the vocabulary of the PPIoT ontology is used by the PDM for
representing the user’s privacy preferences. Below, we will provide details for its use
in the fitness data privacy model.

8 http://pdm-aids.dibris.unige.it/PPIoT.
9 http://vocab.deri.ie/ppo.
10 https://www.w3.org/ns/ssn/.

1 The distinction among such subjects in the GDPR, which clarifies the legal obligations of the TP, is not
relevant to the aim of a user-side privacy manager.
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4.2 Datasets of the fitness data privacy model

Table 1 shows a comparison of the data collection practices of four fitness trackers.
We selected these trackers based on both popularity and maturity of their software
solutions (i.e., we only selected those that have a working Web API enabling them to
share/integrate with third parties). A complete list of popular fitness trackers that have
resource APIs can be found in Zhao et al. (2016). Among these fitness trackers, in this
study we considered Fitbit, Garmin, Jawbone, and Misfit.

As shown, the requested data can be categorized into three sets. The first set of
requested data are the smartphone permissions, which are requested during installation
or the first use of the app. We define this set as the S set. The next set of data is requested
inside the fitness tracker application, usually as the user signs up for the app’s online
services. We define this set as the A set. Finally, the app collects fitness data during
the use of the tracker, which we define as the F set. Importantly, the data items in the
F set are by default only available in the tracker’s own application, but other TPs can
ask for permission to gain access to this data.

The final column in Table 1 is the superset of requested data items collected by the
four trackers, taking into account the different mobile operating systems. Moreover,
it includes the G set which concerns the GDPR requirements. It will be explained in
Sect. 4.6. The data items in this final column form the Fitness Data Privacy Model for
this study. The permissions are requested in the order S-A-F-G, which will be used
throughout this paper.

In the next sections, we describe the fitness datasets for the privacy model. The
data items in the S-A-F sets are instances of the PPIoT Dataset concept introduced in
the previous section, while the data items in the G set are the objects of the privacy
condition properties mentioned in the previous section and further detailed in Sect. 4.6.

4.3 The S set (smartphone permissions)

The request of smartphone permissions differs not only by fitness tracker but also by
mobile OS. We took into account Android, i0S, and Windows Mobile, acknowledging
that Android permissions changed from “ask on installation” (AOI) in version 5.9 and
below to “ask on first use” (AOFU) in version 6.0 and above. While Table 1 considers
the Android AOI permissions requested by various fitness apps, Fig. 3a, b shows the
Fitbit’s permissions for Android AOFU and iOS for comparison.

The final data model for the S set is composed of the permissions requested by the
fitness apps in Table 1. The background App and Notifications i0OS phone permissions
are not taken into account since these permissions are not relevant for third-party data
access. Other permissions in Android AOI are also not taken into account, except
for Bluetooth, which older versions of Android put into this category. The Device &
Call information is known in newer Android versions as the Phone permission and is
included as such. The permission for Photos/Media/Files in Android AOI was divided
into Photos and Media & Music to reflect the granularity of iOS permissions. We
finally have a total of 12 permissions in the S Set.
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Q 3 % eee00 = 20:38 T © 72% W)

£ Settings Fitbit

App permissions

ALLOW FITBIT TO ACCESS

Fitbit
Location While Using >
[ Camera m !J Contacts ¢
B Contacts «© & Protos _
e Motion & Fitness (>
Q Location on}
B Ccamera O
. Phone [ on) J1 Media & Apple Music O
() Notifications
n SMS m Badges, Sounds, Banners :
@ Background App Refresh C
B8 Storage «©

(a) Android 6.0+ smartphone permissions (S (b) iOS smartphone permissions (S set).
set).

About you

Why are we asking this? e [ XoN ) App.
®a itbil i X

fitbit
The Best App by Acme, Inc. would like the ability to access
and write the following data in your Fitbit account

First Name

Last Name

Birthday January 1, 1993 ’
sleep

Fitbit devices and settings
food and water logs @
activity and exercise
friends @

heart rate

profile @

weight @

location and GPS

( o D
\\ eny J

Data shared with The Best App will be governed by Acme, Inc.’s privacy policy
and terms of service. You can revoke this consent at any time in your Fitbit
account settings. More information about these permissions can be found
here.

Height O ft 0in

Weight (0]

Sex Unspecified

[N N<NN<NNNN]

Create an account

(¢) In-app requests (A set). (d) Fitness data sharing permissions (F set).

Fig.3 Examples of permission requests: Fitbit permissions
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4.4 The A set (in-app requests)

In addition to the smartphone permissions that fitness tracking apps ask for, they also
gather information inside their application, e.g., as part of the sign-up process for their
online services. These data usually include the user’s First Name and Last Name, Birth
Date, Gender, Height, and Weight. Note that these data items are mandatory for all
fitness trackers in Table 1; the only optional piece of information is Misfit’s request
for the user’s Occupation. Figure 3c shows the A set for the Fitbit app (other apps are
similar), as reported in Table 1. A total of 6 permissions are considered as part of the
A set.

4.5 The F set (fitness data)

The F set contains the data fitness trackers collect while the user is using the device.
Some of these data are automatically collected by the tracker (e.g., steps, distance)
and shared with the device’s own fitness tracking app (e.g., the Fitbit device shares
fitness data with the Fitbit app), while the user has to enter other data manually into
the app (e.g., food and water logs, friend list).

While these data are “shared” with the native fitness tracker TP by default (since
this TP serves as the collecting TP), most trackers have an API that allows users
to further share these data with other TPs in exchange for additional fitness or health
services the user can benefit from. This data sharing was modeled in Torre et al. (2018)
together with its associated risks. Table 1 shows the data that can be shared to other TPs
from the four considered fitness apps. In this comparison, Fitbit gives the users more
granular control over which of the fitness data can be shared with other TPs through
their API, as shown in Fig. 3d'2. Additionally, these settings can be revisited in their
Web app'?, where users have the option to revoke access. The other apps in Table 1
also give users control but only give them the option to allow/deny the other TP access
to the entire F set. We follow Fitbit’s permission model for this set but give users even
more fine-grained control over Activity and Exercise data, breaking these permissions
down into steps, distance, elevation, floors, activity minutes, and calories activity. We
implement this additional granularity because these data involve a particular inference
risk, potentially exposing some of the other data in this set (Torre et al. 2018). A total
of 14 permissions are included in the F set.

Note that the F set permissions are repeated for each additional TP that requests
access to this data. As such, these permissions are not for the native app of the fitness
tracker, but for other TP apps that the user desires to use and allow access to her/his
fitness tracking data. In this study, instead of taking into account individual TPs, we use
the PPIoT EntityType concept, mentioned in Sect. 4.1, to investigate which category of
TP apps (i.e., “who”) the user prefers to share with. This parameter has been shown to
be important in determining users’ privacy preferences (Lee and Kobsa 2017). Since
entity types are intimately related to GDPR-based requirements, these permissions are
included in the G set.

12 https://dev.fitbit.com/build/reference/web-api/oauth2/.
13 https://community.fitbit.com/t5/Flex-2/How-do-I-revoke-access/td-p/2701359.
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4.6 G set (GDPR-based permissions)

The G set includes permissions that are based on GDPR requirements and modeled
using the PPIoT vocabulary. Below, we list the PPIoT properties for expressing per-
missions for accessing the user data (also reported in Fig. 1). These properties will
subsequently be explained with reference to the GDPR. The main permissions con-
cern the frequency (hasPersistence), reason (hasReason), and method (hasMethod)
of data access, as well as the retention period of collected data (hasMaxRetentionPe-
riod). Other controls provided to users to manage their privacy include the location
of the device (hasSensingLocation), the priority of a certain preference (hasPriority),
preferences for further sharing of tracking data (allowsSharing With), negotiability of
the privacy condition (allowsNegotiation), and types of TPs that can request access to
their data (EntityType).

GDPR Article 3-1 and 3-2 (The European Parliament and the Council of the Euro-
pean Union 2016), respectively, state that the regulation:

— “applies to the processing of personal data in the context of the activities of an
establishment of a controller or a processor in the Union, regardless of whether
the processing takes place in the European Union (EU) or not,” and;

— “applies to the processing of personal data of data subjects who are in the Union
by a controller or processor not established in the Union.”

Article 3-1 means that any TP registered in the EU must obey this regulation,
regardless of doing the processing within the EU or not. Additionally, Article 3-2
means that any TP, whether or not registered in EU, that processes personal data of
subjects who are in the EU must also abide to this regulation. Therefore, GDPR’s
territorial scope is not limited to the EU; it also applies to TPs outside the EU who
access personal data of subjects who are in the EU. For this reason, we made sure that
our PPIoT vocabulary conforms with the GDPR.

The data handling principles are defined in Art. 5 of the GDPR (The European
Parliament and the Council of the European Union 2016). It specifies that TPs must
declare explicit and legitimate purposes (“purpose limitation”). Consequently, our
hasReason enforces TPs to explicitly provide the underlying purpose of their data
access.

Personal data must also be kept for no longer than is necessary (‘“‘storage limita-
tion”). It is also stated in Art. 15 that the TPs must provide the envisaged period for
which the personal data will be stored, or, if not possible, the criteria that will be used to
determine that period. This regulation is taken into account by the maxRetentionPeriod
property.

GDPR also requires data handling to be adequate, relevant, and limited to what is
necessary (“data minimization”). TPs’ frequency of data access has thus to be adequate
and limited to what is necessary; this is addressed by the (hasPersistence) property.

Data accessed must also be processed in a way that ensures appropriate secu-
rity of the personal data, e.g., using appropriate technical or organizational measure
(“integrity and confidentiality”). For this reason, the hasMethod property requires TPs
to state the accessing methods to meet this requirement.
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It is stated in Art. 15 that the accessing TPs must also specify the recipients or
categories of recipients to whom the personal data have been or will be disclosed. The
EntityType property conforms to this regulation as it provides categories of TPs that
receive personal data.

We report the terms used to unambiguously represent these permissions. The
purpose of data collection, hasReason, includes safety, health, social, commercial,
and convenience. The frequency of data access, hasPersistence, includes continuous
access, continuous access but only when using the app, and separate permissions for
each workout. For the retention period of collected data, hasMaxRetentionPeriod, per-
missions include retain until no longer necessary, retain until the app is uninstalled,
and retain indefinitely.

The types of TPs (instances of EntityType) that can request access to the user’s
Fitness data include Fitness/Health apps, Social Network (SN) apps (public or friends
only), corporate and government Fitness Programs, and other apps on the user’s
phone.

We did not include the hasMethod property since it involves technical background,
as stated in Sect. 2.4, which may not be known to the users. For simplicity, we assume
that the TPs’ hasMethod data access is encrypted.

4.7 A conundrum of settings

We note that Fitbit asks for a staggering total of 24 permissions across the S, A, and
F data sets. Our data model, which takes a superset of permissions asked by all four
fitness trackers, more granular Activity and Exercise data, and the additional G set,
include 45 permissions in total. Moreover, if users want to share their fitness data (F
set) with one or more additional health or fitness tracking apps, the permissions for
this must be decided upon for each additional TP individually.

Most current fitness tracker apps do not ask these permissions in a clear way, and
the settings are often hard to find in case the user wants to change them. That said,
even with a more usable UI for making these settings, the sheer number of them is
arguably a significant burden to the user and cause of possible errors. This is why we
advocate the use of semiautomated interactive privacy recommendations to partially
relieve users’ burden of setting each of these individual permissions and meanwhile
maintain the control on privacy preferences.

5 Data collection

To collect a sample of fitness [oT permission settings, we recruited 310 participants
through Amazon Mechanical Turk. After data preprocessing, we utilized the data of
295 participants. We asked people to only participate if they were active Fitbit users',
and checked this requirement by asking participants to enter the first and last few digits

of their Fitbit serial number. The participants consisted of 34.2% males and 65.8%

14 We restricted our study to Fitbit users rather than users of any fitness trackers to make sure that our
sample had a more homogeneous existing experience with fitness permission setting interfaces.
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females, had mean age of 35, and were generally highly educated (62% had at least
a bachelor’s degree). We restricted our study to fitness tracker users to detect the real
preferences of target users.

We developed a prototype fitness app named FitPro, which systematically asked
for all of the permissions in the fitness data privacy model that we defined in Sect. 4
(see Table 1, last column). Each participant used this prototype, followed by a ques-
tionnaire.

5.1 FitPro prototype fitness app

The goal of the FitPro prototype fitness app is to collect privacy preferences of the
participants in a semi-realistic environment'>. As shown in Fig. 4, the permission-
setting interface of FitPro consists of the following parts (the order of the screenshots
follows the prototype):

e Figure 4a shows the permissions Ul for the A ser—the data users are asked to
provide as they first open the app and sign up for the fitness tracker’s services. In
most existing fitness trackers (including the ones we discussed in Sect. 4), these
data are mandatory. In our simulation, they are optional, allowing us to measure
whether participants would decide to withhold any of these data.

e Figure 4b shows the permissions UI for the S set—the permissions the TP needs
from the smartphone. These permissions are usually asked all at once on instal-
lation or one-by-one on first use, but we decided to integrate them into our
permission-setting interaction by requesting them on a separate screen in our Fit-
Pro app.

e Figure 4c shows the Ul for the permissions to share the collected fitness data (F
set) with other TP entity types (G set); as such, this UI combines the requests
about “what data” can be accessed by “who”. As discussed in Sect. 4.5, sharing
fitness data with other apps is a common phenomenon; 40.33% of the participants
in our study indicated that they had permitted other apps to access their fitness data.
Rather than setting these permissions on an ad hoc basis per requesting app, our
prototype allows the user to set these permissions for the various types of entities
defined in Sect. 4.6.

e Figure 4c, d shows the Ul screens for the G set permissions which address the
GDPR requirements—specifically, the allowed purposes for which data may be
accessed, and the frequency and retention period of the accessed data, respectively.

5.2 Questionnaire

After using the prototype, we asked participants to fill out a questionnaire'®. The
goal was to investigate if certain user traits, some of them already studied in the lit-
erature, have relations with participants’ privacy behaviors collected through FitPro.
Specifically, we aimed to measure participants’ privacy-related attitudes (trust, privacy

15 The prototype can be used at http://pdm-aids.dibris.unige.it/simulation.php.
16 http://pdm-aids.dibris.unige.it/questionnaire.php.
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Fig.4 Our prototype fitness app, presenting Uls for collecting fitness tracker privacy settings

concerns, perceived surveillance and intrusion, and concerns about the secondary use
of personal information), the negotiability of their privacy settings, their social behav-
ior (social influence and sociability), exercise tendencies (a proxy for their attitude
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and knowledge about fitness tracking), and demographic information. The questions
used in this study are presented in Table 4 in the Appendix.

5.2.1 Privacy attitude

Our privacy attitude questions consist of 5 topics that were used to study different atti-
tudes. Questions on participants’ trust in app provider were derived from Knijnenburg
and Kobsa (2013) and Sutanto et al. (2013). Questions on general privacy concerns
are based on (Malhotra et al. 2004) which was originally based on Smith et al. (1996).
Items regarding participants’ perception of surveillance and intrusion, and secondary
use of personal information are taken from Xu et al. (2008, 2012), and Smith et al.
(1996), respectively. These user attitudes are used extensively in the privacy literature
and are proven to have significant effects on users’ privacy behaviors.

5.2.2 Negotiability of privacy settings

Users’ preferences are rarely static, and users’ “preference dynamics” (i.e., the rate at
which their preferences evolve) tend to differ per person and per domain (Rafailidis
and Nanopoulos 2016). Moreover, in the field of privacy, users’ decisions tend to
depend on the risks and benefits of disclosure (Knijnenburg et al. 2013). Following
this approach, we take the negotiability of participants’ privacy settings into account in
this study. We measure it as an event-based change of preference: We ask participants
to re-assess their disclosure decision for each item in the S, A, and F sets, imagining
that the benefits or risks of disclosure increase or decrease (i.e., four re-assessments
for each item).

5.2.3 Social behavior

Research shows that users’ activities and preferences are to a certain extent affected
by the social network around them (Wu et al. 2017). Conversely, the homophily effect
suggests that people form associations with individuals that have similar preferences
(Wu et al. 2017). Similarly, sociability (i.e., the ability to interact) also is a factor that
can be used to predict links between users (Si et al. 2017) who do not necessarily have
similar preferences. We explored this dynamic as a potential motivator for sharing one’s
exercise activity by creating a questionnaire regarding social influence and sociability
in the fitness domain.

5.2.4 Exercise tendencies

These questions are grouped into two topics: exercise attitudes and healthy living
expertise. The former items are fully self-developed. Our aim is to investigate if par-
ticipants’ exercise attitude (e.g., the intensity of exercise, type of exercise, their health,
how important exercise is to them, the reason for exercising) influences their tendency
to allow fitness apps to collect and share their data. The healthy living expertise ques-
tions are taken from Knijnenburg (2015) and measure how knowledgeable participants
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are about fitness tracking. Domain experts tend to be less concerned about their pri-
vacy than domain novices; hence, we expect an association between these questions
and participants’ privacy settings.

5.2.5 User demographics

User demographics such as gender, age, location, and education are often used to
improve recommendation accuracy (Rafailidis and Nanopoulos 2016). In our ques-
tionnaire, we introduce this category to investigate if there is an association between
participants’ privacy settings and their demographic attributes, as resulted in previous
studies (cf. Knijnenburg and Kobsa 2013).

6 Privacy preference profiles

In this section, we present our data analysis, describe our method of clustering privacy
settings, and generate cluster-based privacy-setting profiles. The analysis in this section
is intended to address RQ2.

6.1 Data analysis

Figure 5 shows that there is considerable variability in the average rate at which
each permission is allowed or denied in our sample. The permissions requested by
the application (A set), mainly concerning demographics (see Table 1), have a high
disclosure rate, which is in line with the results of other studies (cf. Knijnenburg and
Kobsa 2013).

For the smartphone permissions (S set), participants are more likely to allow motion,
location, Bluetooth, and mobile data. This makes sense, because these are the minimum
permissions needed to run a fitness tracker app. In this set, the permission to access
photographs or contacts is granted much less often.

Regarding the purpose, frequency, and retention period of data collection (G set),
participants seem open to data collection for health (the main purpose of a fitness
tracker) and safety (another purpose often indicated by fitness trackers for continuous
location-tracking services). Conversely, users are less likely to agree to data collection
with an indefinite retention period, and they prefer not to share data with government
fitness programs or publicly on social media.

We do not show the fitness data (F set) in Fig. 5 because the permissions for this
data set are requested for multiple entity types of the G set, as discussed in Sect. 4.5.
Hence, we present these data items in Fig. 6 instead, showing each permission for
each EntityType. Participants are more likely to give permission to share their data
with their friends on social networks and to other health/fitness apps, and they are
less likely to give permission to share their data with government fitness programs
or publicly on social media. As for various data types, steps are shared most openly,
while location, friends, and weight are shared less openly.
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Fig.5 Average acceptance rates of each privacy permission (allow =1, deny=0)

Upon further inspection, we note that participants tend to share either (almost) all
or (almost) none of their fitness data with a given entity. This suggests that fitness data
permissions are more likely to be influenced by the receiver (“who”) rather than the
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Fig.7 Evaluation of different numbers of clusters for each set

specific data item (“what”). As discussed above, these “who” parameters are instances
of the PPIoT EntityType. Therefore, we expect that clustering F permissions should
provide an unanimous deny/share for all items, while clustering G permissions should
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Fig.8 Large error rates produced by directly clustering the entire dataset

provide more nuanced clusters of different entity types receiving the data specified in
the F set.

6.2 Clustering methods

Our dataset shows considerable variability between participants’ privacy preferences—
a finding that is broadly reflected in the privacy literature (cf. Knijnenburg et al. 2013).
Using clustering, one can capture the preferences of various users with a higher level of
accuracy. Hence, the goal of this section is to find a concise set of profiles (clusters) that
can represent the variability of the permission settings among our study participants.

To this end, we cluster participants’ permissions with Weka!” using the K-modes
clustering algorithm (Chaturvedi et al. 2001) with default settings. The K-modes algo-
rithm follows the same principles as the more common K-means algorithm, but it is
more suitable for the nominal variables in our dataset.

In our first clustering attempt, we tried to find a set of profiles by clustering the
entire dataset, including the S, A, F, and G subsets. A drawback of this method is that,
assuming we cluster the participants into n clusters, this method will only provide n
possible profiles to be used for recommendations to the users. A further drawback of
clustering the full set of 45 permissions is that it gives large error rates for anything
but a very large number of clusters (see Fig. 8; the sum of squared error for the viable
4-cluster solution is 1435).

If we instead generate a separate set of n “subprofiles” for each of the four datasets
(S, A, E and G), n* different combinations of profiles can be used for recommendation,
providing finer-grained privacy-setting controls to the users compared to clustering
the full set. In addition, error rates are lower when clustering each set separately, as
shown in Fig. 7. For example, with only 2 clusters per set, the sum of squared error
reduces to 1277 (a 24.3% reduction). A further benefit is that the profiles for each set
can be investigated in more detail.

17 https://www.cs.waikato.ac.nz/ml/weka/.
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Another modeling decision must be highlighted as well: In our dataset, the fitness
data permissions (F set) are specified repeatedly for each entity type (part of the G
set). We tried to cluster these combinations, taking into account all 98 features (i.e.,
14 fitness data per 7 entity types). This analysis resulted in two profiles: one that had
“allow all” for health and SN public entities (and “deny all” for all other entities),
and one that had “deny all” for all entities. This means that: a) very similar results
can be obtained by considering the fitness data permissions separately from the entity
type, and b) as expected, the “who” parameter (entity type) is more important than the
“what” parameter (fitness data permissions).

In the following, we will discuss our method that generates subprofiles for each of
the four datasets.

6.3 Clustering outcomes

We first investigate the optimal number of clusters by running the K-modes algorithm
for 1-6 clusters with a 70/30 train/test ratio, using the sum of squared errors of the test
set for evaluation. The results are shown in Fig. 7. Using the elbow method (Kodinariya
and Makwana 2013), we conclude that 2 is the optimal number of clusters for each
dataset'.

The final cluster centroids of the 2-cluster solution for each dataset are shown in
Fig. 9, together with the results of the 1-cluster solution. We describe the subprofiles
of each set in the subsections below.

6.3.1 The S set

— Minimal (cluster A): This subprofile allows the minimum permissions needed to
effectively run a fitness app. This includes identity, location, Bluetooth, motion &
fitness, and mobile data permissions.

— Unconcerned (cluster B): This subprofile allows all permissions in this dataset.

6.3.2 The A set
e Anonymous (cluster A): This subprofile shares only users’ gender, height, and
weight information but not birth date or first and last name.
e Unconcerned (cluster B): This subprofile shares all data requested in this dataset.
6.3.3 The F set

e Unconcerned (cluster A): This subprofile shares all fitness data with TPs.
e Strict (cluster B): This subprofile does not share any fitness data with TPs.

I8 We obtain similar results using other clustering algorithms, such as hierarchical clustering.
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Fig.9 Privacy profiles from the
two clustering methods:
1-cluster results (full data) and
2-cluster results (privacy
subprofiles) for each dataset
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Table 2 Association of cluster A F S
assignments for each pair of
subsets, with odds ratio (OR) F OR: 1.34 _ _
and p value
p = 0.266
S OR: 3.36 OR: 2.56 -
p = 0.001 p = 0.001
G OR: 1.62 OR: 26.91 OR: 2.54
p = 0.059 p <.001 p < .001

6.3.4 The G set

e Socially active (cluster A): This subprofile shares data with health/fitness apps
and social network friends, but not with other recipients. Sharing is allowed for
health, safety, and social purposes but not for commercial purposes.

e Health-focused (cluster B): This subprofile does not allow sharing with any TPs.
Sharing is allowed only for health and safety purposes.

6.4 Cluster dependency

In Sect. 6.2, we argued for the creation of separate profiles for each of the four subsets
of permissions (S, A, F and G sets). In this section, we validate this approach by testing
the dependencies between the profiles of each pair of subsets using chi-square tests.
If these tests are nonsignificant and/or show a small effect size, then the cross-subset
dependencies between clusters are low, and it is indeed meaningful to cluster each
subset independently.

The odds ratios in Table 2 indicate the dependencies between two particular subsets.
For example, the odds of participants being clustered into cluster B of the F set were
1.34 times higher if they were clustered into cluster A of the A set than if they were
clustered into cluster B of the A set. The odds ratios in Table 2 range from 1.34 to
26.91, and while all but one pair show a significant association, only one odds ratio
represents a substantial association (i.e., a large'? effect). The exception is the F and G
set pair, with an odds ratio of 26.91 (p < .001). Coincidentally, the permissions of the
F set and the G set are naturally connected in our design, since the permissions in the
G set consider the disclosure of the permissions in the F set to “fourth-party” entities.
Beyond this understandable association, we consider our clustering assignments per
subset to be independent given above results.

7 Profile prediction

Now that we have identified two privacy “subprofiles” per dataset, the next step is to
find predictors for the profiles and predict which subprofiles each participant belongs

19 The generally accepted thresholds for odds ratios are 1.68 for a small effect size, 3.47 for a medium
effect size, and 6.71 for a large effect size.
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to. This section aims to answer the research question: RQ3 Are there any privacy
profile items or questionnaire items that can be used to predict which privacy profile
best describes a user?

Recommender systems usually ask users to evaluate a few items before giving
recommendations regarding all remaining items. Likewise, in our system, we might
be able to identify certain permission items inside each privacy subprofile that—when
answered by the user—could drive the prediction. Since the items are the permission
preferences included in the subprofiles, collected through our FitPro prototype app,
we call this the “direct prediction” approach. Additionally, we also explored whether
the items from our questionnaire (see Sect. 5.2) could drive the prediction. Since these
items are not part of the privacy subprofiles, we call this the “indirect prediction”
approach. For each approach and for each subset of data (S, A, F, and G sets), we
develop decision trees that will enable us to predict which subprofile best describes a
user. The trees contain the subprofile items (direct prediction) or questionnaire items
(indirect prediction) that can be asked to classify each user into their correct subprofile.

We developed our decision trees using the J48 tree learning algorithm. J48 is an
efficient and widely used decision tree algorithm that can be used for classification
(Patil and Sherekar 2013). Previous work shows the effectiveness of this approach
to predict privacy settings within each cluster (Bahirat et al. 2018); here, we take the
opposite approach and use it to predict cluster assignments instead. In our approach, the
J48 algorithm extracts the permission items (for the direct prediction) or questionnaire
items (for the indirect prediction) that classify a new user into the correct subprofile
with the highest possible accuracy.

The tree results are reported in Table 3. For each determiner type, four trees are
produced for A, S, F, and G sets, respectively. All trees produced binary leaves that
output cluster A and B of each specific set. The condition of the cluster assignment
is reported in the table. The number of assigned and incorrect predictions is also
shown (i.e., #assigned/#errors) together with the prediction accuracy of each tree. The
evaluation of all developed J48 trees was performed using k-fold cross-validation.

7.1 Direct prediction questions

In our direct prediction approach, the aim is to ask users to answer certain permission
requests from each subset as a means to classify them into the correct subprofile
(thereby providing a recommendation for the remaining items in that subset). For this
approach, we thus classify users using the items in the subset as predictors.

Our results for this approach are reported in the “direct permission” column in
Table 3. It shows, for each subset, the question (i.e., setting) that best classifies our
study participants into the correct subprofile.

When running tree-based algorithms, a trade-off has to be made between the parsi-
mony and the accuracy of the solution. Parsimony prevents over-fitting and promotes
fairness (Bahirat et al. 2018) and can be accomplished by pruning the decision trees.
In our study, while multi-item trees may provide better predictions, the increase in
accuracy is not significant compared to the single-item trees presented in Table 3.
These single-item solutions already obtained a high accuracy, and their parsimony
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prevents over-fitting and minimizes the number of questions that will need to be asked
to the users in order to provide them accurate recommendations. The resulting solution
involves a 4-question input sequence—one question for each subset.

For the S set, the photograph permission is the best subprofile predictor. This is
one of the least-shared permissions (see Fig. 5), and 94% of participants who give this
permission are correctly classified into the “Unconcerned” subprofile, while 83% of
participants who do not give this permission are correctly classified into the “Minimal”
subprofile.

For the A set, first name is the best predictor. Again, 94% of participants who
share their first name are correctly classified into the “Unconcerned” subprofile, while
98% of participants who do not share their first name are correctly classified into the
“Anonymous” subprofile.

For the F set, the activity minutes permission is the best predictor. This is one of the
most shared permissions. 97% of participants who give this permission are correctly
classified into the “Unconcerned” subprofile, while 100% of participants who do not
give this permission are correctly classified into the “Strict” subprofile.

Finally, for the G set, the best predictor is whether the participants allow data col-
lection for social purposes. If so, participants are correctly classified into the “Socially
active” subprofile with 84% accuracy, otherwise they are classified into the “Health-
focused” subprofile with 80% accuracy.

7.2 Indirect prediction questions

A similar procedure was applied to the questionnaire data concerning the following
categories of user traits: privacy attitude, social behavior, negotiability of privacy
settings, exercise tendencies, and user demographics (cf. Table 4 in the Appendix).

User traits have been found to be associated with information disclosure and can
hence be used to predict user privacy settings (Knijnenburg and Kobsa 2013; Knijnen-
burgetal.2013; Lietal. 2017; Raber and Kriiger 2018). For instance, Knijnenburg et al.
(Knijnenburg and Kobsa 2013, Knijnenburg et al. 2013) show that users can be grouped
according to their privacy attitudes, behaviors, and demographic characteristics. The
best strategy for recommending users differs for each of these groups. Combining
both privacy and personality measures (i.e., user traits) was shown to yield significant
improvement in prediction accuracy in social networks for fine-grained location shar-
ing (Raber and Kriiger 2018). Finally, cultural traits significantly improve prediction
accuracy, beyond demographics, and attitudinal and contextual factors (Li et al. 2017).

In the current study, we refer to the prediction of privacy preferences using user
traits as indirect prediction. The indirect prediction approach has a lower accuracy
than the direct approach presented in Sect. 7.1. This is expected, since unlike the
direct prediction questions, the questionnaire items about user traits have no direct
relationship with the permission settings in the privacy profiles. These results are still
interesting, though, since they allow the user to avoid making any specific privacy set-
tings [see Knijnenburg and Jin (2013) for a similar argument]. Moreover, the resulting
predictors show interesting semantic relationships with the datasets they predict. We
discuss these results in more detail in the following subsections.
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7.2.1 Privacy attitude

We first attempted to use privacy attitude questions as predictors of users’ subprofiles.
The resulting trees for this indirect prediction approach are shown in the “privacy
attitude” column of Table 3.

Among all the privacy attitude questions, “trust” and “privacy concern’ are found to
be predicting factors of user subprofiles. Interestingly, there is a single privacy concern
question (“I believe other people are too concerned with online privacy issues”) that
predicts the user’s S and F subprofiles. Those who agree that people are just too
concerned about privacy issues belong to the “Unconcerned” subprofile, while those
who have higher concerns tend to be in the “Minimal” subprofile. The same goes for
the F set where those who strongly disagree—(1) on a 7pt scale, thinking that it is
a major concern, belong to the “Strict” subprofile. Otherwise, they are classified as
“Unconcerned.”

For the trust question, “I believe the company is honest when it comes to using the
information they provide,” it can be used to predict users’ subprofile for the A set.
Participants are assigned to the “Anonymous” subprofile if they answer this question
with “somewhat disagree” (3) or below. Those who indicate higher levels of trust are
assigned to the “Unconcerned” subprofile. The A set concerns information provided
directly to the fitness app, so it makes sense that trust is a significant predictor of users’
willingness to provide such information.

For the G set, those users who agree (6) or extremely agree (7) with the question
“I believe the company providing this fitness tracker is trustworthy in handling my
information” are classified in the “Socially active” subprofile, while the remaining
users are classified in the “Health-focused” subprofile. The question really fits the
G set since GDPR permissions are mostly about handling the user information by
the TPs. Particularly, it makes sense that users who do not trust the fitness app in
handling their information would be assigned to the “Health-focused” profile, since
this profile prevents the app from sharing their data to any other entity and only allows
data collection for the purpose of health and/or safety.

The results highlight some semantically relevant relationships between users’ atti-
tudes and their assigned privacy profiles. The S and F sets share the same predictor
question which makes the final solution a 3-question input sequence—this means that
one fewer question must be asked, compared to the direct questions in Sect. 7.1.

7.2.2 Social behavior

We also searched for predictors among the questions about social influence and socia-
bility. The resulting trees for this indirect prediction are shown in the “social behavior”
column of Table 3.

A single sociability question can be used to predict subprofiles for both the S and
A sets. For the S set, users who are completely open (1) to the idea of meeting new
friends when they exercise are classified in the “Unconcerned” subprofile, otherwise
they are classified in the “Minimal” subprofile.
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For the A set, users who are likely not (6) or definitely not (7) open to meeting new
friends are classified in the “Anonymous” subprofile, otherwise they are classified in
the “Unconcerned” subprofile.

For the F set, users who have never (7) met any new friends while exercising are
classified into the “Strict” subprofile, while others are classified into the “Uncon-
cerned” subprofile. This, as well as the findings regarding the S and A sets, seems to
suggest that users’ disclosure of personal information is likely to be related with their
tendency to socialize while using fitness apps.

For the G set, users who are influenced to do exercise if their social media friends
also exercise (i.e., “definitely yes” to “neutral” (1-4)) are classified into the “Socially
active” subprofile, otherwise they are classified into the “Health-focused” subprofile.

Again, we found interesting semantic relationships between social influence and
sociability while exercising and users’ privacy-related behaviors: Users who are more
prone to reap social benefits from exercising are more likely to give the app more
widespread permissions. Similarly to privacy attitudes, these predictors only involve
a 3-question input sequence.

7.2.3 Negotiability of privacy settings

We also attempted to use the negotiability of users’ privacy settings as input for sub-
profile prediction. The “negotiability of privacy settings” column of Table 3 shows the
tree learning solutions for this approach.

For the S set, users who are willing to give the phone permission (access phone
calls and call settings) if the benefits increase are classified into the “Unconcerned”
subprofile, while users who refuse to share the phone permission even if the benefits
increase are classified into the “Minimal” subprofile. In other words, the privacy pref-
erences of the latter group are not negotiable; they will still share only the minimum
permissions needed to run the tracker, even if the benefits increase.

For the A set, users who are willing to give the identity permission (account and/or
profile information) if the risks decrease are classified into the “Unconcerned” sub-
profile, otherwise they are classified into the “Anonymous” subprofile. Interestingly,
the identity permission is part of the S set rather than the A set, but it semantically
coincides with the items in the A set, which include the user’s name and birth date
(i.e., identifying information). As such, it makes sense that users who are unwilling to
share their phone’s identifier even when the risks decrease are also unwilling to share
their personal identity information.

For the F set, users who share their sleep fitness data with other TPs if the risks
decrease are classified into the “Unconcerned” subprofile, otherwise they are classified
into the “Strict” subprofile. Users in the latter subprofile will not share their fitness
data with any other TPs, even if the risk decreases.

For the G set, users who share their fitness app profile with other TPs if the risks
decrease are classified into the “Socially active” subprofile, otherwise they are classi-
fied into the “Health-focused” subprofile. Even though profile is a permission from the
F set, it semantically coincides with the subprofiles of the G set: Users in the “Socially
active” subprofile tend to have permissions that allow them to connect to others while
exercising, and sharing one’s fitness app profile is indeed a potential way to connect
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Fig. 10 Tree evaluation. Root-mean-square error for each J48 tree algorithm

to other users. As such, it makes sense that users in this subprofile are more willing to
share their fitness app profile if the risks of doing so decrease.

The classification accuracy of the negotiability questions is the highest among all
“indirect prediction” approaches. The most predictive questions also have understand-
able semantic relationships with the datasets they predict.

7.2.4 Exercise tendencies and user demographics

We applied tree learning algorithms to the group of exercise tendency questions
and user demographics as well, but we found no significant predictors among these
questions. While other studies have found user demographics to be significant predic-
tors of privacy behaviors (Knijnenburg and Kobsa 2013), in this particular study we
were not able to find any significant predictors among the group of user demograph-
ics.

7.3 Tree evaluation

Figure 10 shows the root-mean-square error of all the trees produced by the
J48 classifier. The evaluation has been executed with k-fold cross-validation with
k = 10.

As expected, the “direct prediction” approach results in lower error rates than the
various “indirect prediction” approaches, since in the former approach the items are a
direct part of the privacy settings that constitute the subprofiles. Among the “indirect
prediction” approaches, the negotiability of privacy settings has slightly lower error
rates. This is not surprising, since it is at least partially related to the privacy settings
(yet evaluates whether those settings will change under certain conditions).
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8 Recommendation strategies and validation

In this section, we describe different types of guided privacy-setting approaches that
are based on the previous clustering and tree learning results. When implemented in
the PDM, the guided interface simplifies the privacy-setting experience by providing
privacy recommendations. This answers RQ4: How can we effectively exploit the
results to provide recommendation? We also present a validation of the recommenda-
tion results using a holdout sample of permission settings from 30 additional users.
The PDM design prototype implementing the recommendation strategies is available

online?0.

8.1 Privacy-setting recommendations
8.1.1 Manual setting

The baseline privacy settings interface is one where users have to manually set their
settings, which are initially turned off. If users do this correctly, these manual settings
should match their privacy preferences 100%. However, the process of manually set-
ting one’s privacy settings can be very burdensome for the user; our system has a total
of 45 permissions that are required to be managed. Under such burden, users are likely
going to make mistakes (cf. Madejski et al. 2012), so the 100% accuracy may not be
achieved through manual settings.

The next strategies exploit the results of the analysis in the previous section to
provide interactive recommendations that simplify the task of privacy permission
setting, with different levels and type of user intervention.

8.1.2 Single smart default setting

One way to reduce the burden of privacy management is with single “smart” default
setting. Rather than having the user set each permission manually, this solution already
selects a default setting for each permission. Users can then review these settings and
change only the ones that do not match their preferences.

The optimal “smart” default is a set of settings that is aligned with the preferences
of the majority of users. Hence, we can calculate these settings by using the cluster
centroid of the 1-cluster solution (i.e., the “full data” column in Fig. 9). Figure 11
shows the resulting default values for each dataset. If the user is unhappy with these
settings, she/he can still make specific changes. Otherwise, he/she can keep them
without making any changes.

8.1.3 Pick subprofiles

The single smart default setting works best when most users have preferences similar
to the average. However, our dataset shows considerable variability in participants’
privacy preferences—a finding that is broadly reflected in the privacy literature (cf.

20 The UT design can be found in http://pdm-aids.dibris.unige.it/interface/.
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Fig. 12 Interaction for picking a subprofile for the S set

Knijnenburg et al. 2013). This brings us to our clustering solutions, which create
separate default settings (in the form of subprofiles) for distinct groups of users.

Our first approach in this regard is to have users manually select which privacy
subprofiles they prefer. Figure 12a shows the subprofile selection interface for the S
set. Users can choose either the “Minimal” or “Unconcerned” subprofile, which are
shown in Figure 12b, c, respectively. Similar interfaces are provided for the A, F, and
G sets (not shown here).

The subprofiles provided by this approach have a higher overall accuracy than the
single “smart” default described in Sect. 8.1.1, meaning that the user will have to spend
less effort changing the settings. However, the user will have to select a subprofile for
each dataset. This highlights the importance of having a small number of subprofiles
and making these subprofiles easy to understand. That said, even with only two subpro-
files per dataset, this can be a challenging task. In the next two subsections, we address
this problem by automatically selecting subprofiles based on users’ answers to specific
subprofile items (“direct prediction”) or questionnaire items (“indirect prediction’).

8.1.4 Direct prediction

For the direct prediction approach, we devise an interactive 4-question input sequence
as shown in Fig. 13. Each question asks users’ decision on a specific permission, which
guides the subprofile classification processes as outlined in Sect. 7.1. In effect, each
question informs the system about the user’s subprofile of one of the four datasets,
which means that users no longer have to manually pick the correct subprofiles. Specif-
ically, users will be asked if they agree to share their photographs (for the S set
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Fig. 13 Direct prediction questions

recommendation), first name (for the A set recommendation), activity (for the F set
recommendation), and whether they allow their data to be used for Social purposes (for
the G set recommendation). This 4-question interaction will aid the users in setting all
of the 45 permissions in the system. Depending on the answer to these questions, the
user will subsequently see the settings screens with the defaults set to the predicted
profile. Users can still change specific settings if their preferences deviate from the
selected profile.

8.1.5 Indirect prediction

Similarly, an interactive 4-question input sequence is created to collect users’ privacy-
setting preference for the indirect prediction approach. Compared to the direction
prediction approach, these 4 questions are selected from the questionnaire items instead
of the permission settings. The questions are selected in a manner that yields the highest
accuracy for each permission set: a negotiability question for phone permissions for the
S set (Would you share your phone permission if the benefits increase?), a question
about sociability for the A set (Are you open to the idea of meeting new friends
while you exercise?), a negotiability question for the permission to share sleep data
for the F set (Would you share your sleep permission if the risks decrease?), and a
trust question for the G set, (Do you believe that the company providing this fitness
tracker is trustworthy in handling your information?). Negotiability and attitude have
almost the same accuracy for G set, so we chose attitude for the sake of question
diversity.

The answers to these questions are used to automatically recommend corresponding
setting to users. The benefit of the indirect prediction approach is that the user does
not have to answer any permission questions, not even the four needed in the direct
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Fig. 14 Average accuracies of the recommender strategies on the 30 users in our holdout dataset

approach to give them a subprofile recommendation. Instead, they just need to answer
four questionnaire items.

8.2 Validation

We conducted a validation of these different approaches by running the recommen-
dation strategies on the 30 users in our holdout dataset. The resulting recommended
privacy subprofiles are then compared with their actual privacy preferences. Figure 14
shows the average accuracies of each of the presented approaches.

The Pick Profile approach reaches an 84.74% accuracy. This approach has the
highest accuracy, because only the error from the difference between the privacy
profile and the users’ settings is counted, omitting the errors introduced by the user
classification. This assumes that users can classify themselves with perfect accuracy—
this is likely an incorrect assumption.

Among recommendation approaches, the direct prediction approach is the most
accurate, averaging 83.41%. It almost yields no additional classification error com-
pared to the Pick subprofile approach. The indirect prediction approach has a
significantly lower accuracy of 73.9%.

Finally, the single smart default approach uses only a single “profile,” circum-
venting the need for classification. The default profile settings are shown in the “full
data” column of Fig. 9. The accuracy of this setting is lower than the accuracy of
the subprofile solutions, but it does not lose accuracy on classification. Hence, its
accuracy is a respectable 68.7%, which is not much lower than the indirect prediction
approach.

The details about accuracies are provided in Table 5 in the Appendix.
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9 Discussion, limitations, and future work
9.1 Advanced privacy recommendations

Unsupervised machine learning methods like clustering do not have a ground truth,
and the optimal number of clusters is therefore a subjective decision that can depend on
many factors. Theoretically, an error-free solution can be attained when the number of
clusters is equal to the number of distinct settings—a solution that does not generalize
well because it is over-fitting the data. In this study, we therefore followed the elbow
method: We picked the number of clusters where the within-cluster sum of squared
error transitions from a sharp decrease to a negligible decrease. This approach is
justified in our validation (see Sect. 8.2), as it yields an overall accuracy of 84.74%. A
larger number of clusters will likely somewhat increase this accuracy, but this would
come at the cost of complexity.

From a machine learning perspective, our 2-cluster solution per data subset is rather
simple. It is, however, justified, for two reasons. First, our analysis of the optimal
number of clusters using the elbow method shows that two is clearly the optimal
solution for each subset—a solution with more clusters would not be substantially
more accurate. Second, our goal in this endeavor is not to get the most interesting or
even the most accurate clustering result, but to help end-users by simplifying their
privacy decisions. Two profiles per subset are the least complicated solution, which
is arguably a benefit for our system, especially in the scenario where we ask users to
manually choose among the resulting profiles. In the end, then, we believe that this is
a trade-off between model accuracy and parsimony, which should be explored further
in future work.

We note that our results are by no means trivial. Indeed, by evaluating the clustering
for each set of permissions separately, we end up with a total of 16 (2*) subprofile
combinations. The dependency of the clusters of the different subsets is low (see
Sect. 6.4), which justifies our per-subset approach. Moreover, while the two profiles
of our subsets tend toward one of the extremes, only the F set has “all on” and “all off”
as its two profiles—the others are more sophisticated. These somewhat more trivial
profiles nonetheless yield an accuracy of 94.29%. All accuracy measures are reported
in Table 5 in the Appendix.

In this light, it is important to note that users are still given the option to make
manual changes to their privacy settings after a profile is selected. So even if some of
these profiles tend toward one of the extremes, we argue that they are mostly meant to
be a helpful starting point closest to the users real preferences. We see their simplicity
as an advantage, as they are easy to comprehend, unlikely to overfit our particular data,
and likely to generalize to other scenarios.

The profiles, then, are a convenient shortcut to help users with their privacy
decisions. While researchers have long argued that users make carefully considered
decisions regarding their data privacy (cf. by applying a “privacy calculus” Dinev
and Hart 2006), empirical work has shown that people rarely take the time and effort
to carefully weigh the risks and benefits of their decisions as the privacy calculus
suggests. Instead, many privacy decisions are heuristic and thereby subject to a large

@ Springer



0.R.Sanchez et al.

number of decision fallacies (Knijnenburg et al. 2017). For example, research on the
“default effect” (Johnson et al. 2002) shows that people tend to follow default settings
in making decisions. As such, when all settings are off by default, they tend to end
up sharing less than when all settings are on by default. Practically speaking, our pro-
files represent the default setting that is closest to users’ actual preferences, thereby
reducing the default effect.

More generally, our privacy recommendation procedure uses the privacy calculus as
a “prescriptive” model: Instead of burdening users with the task of balancing privacy
and benefit, our recommendation strategy provides users with a guidance to the privacy
calculus, based on an analysis of the decisions of a large number of other users (which
is used to generate the profiles and the profile-assignment strategy). As such, the value
of this proposed procedure extends beyond the specific profiles discussed in this paper.

Our quest for simplicity does not mean that our recommendation strategies cannot
be improved. For example, one of the limitations of our recommendation strategies is
that they are static: A potential improvement would be to update the recommendations
automatically based on new input. Such a dynamic recommender would have some
drawbacks, though: If the recommender is to update predictions for the current user
based on their feedback, it has only very limited opportunities to do so, since the
interaction consists of only four screens (unlike a typical recommender system, where
users have continual interactions with the system). Likewise, if the recommender is
to learn from each user and recalculate the recommendations for subsequent users, it
means that the system needs some sort of centralized learning component where all
users’ privacy preferences are stored. This in itself requires that users give permission
for their privacy preferences to be stored and processed.

To summarize, our aim in this paper is to study which tracking data are viable for
determining the right recommendation in a simplified manner. For future refinements,
we plan to use dynamic cognitive environment techniques (e.g., dynamic Bayesian
filtering, Kalman filtering, PhD filtering, etc.) that provide update steps to extend our
static approach. Moreover, we plan to combine direct recommendation and indirect
recommendation, which are two different strategies that result from our current studies.

9.2 Dataset limitations

Our dataset is collected via crowdsourcing using a simulation environment with a
mockup system. Crowdsourcing has become an established mechanism in academia
and industry to gather rich user study feedback (Zhao and Zhu 2014), user preferences
and ideas regarding new product designs (Schemmann et al. 2016), quantitative user
experiment data (Joosse et al. 2015), and input data for machine learning studies
(Abhigna et al. 2018). Compared to in-lab studies, it tends to provide access to more
culturally diverse samples, allowing for cross-cultural comparisons (cf. Joosse et al.
2015; Li et al. 2017), or narrowing down to a specific set of users.

The main downsides of crowdsourcing are the variable quality of worker input
(which can be mitigated through proper compensation, time monitors and attention
check questions—we applied all of these mechanisms, resulting in a reduction in our
sample from 310 to 295 participants with valid data) and the lack of realism that
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comes with a simulated study environment. While we acknowledge that our simulated
approach (with a system mockup) lacks some ecological validity, we also note that
several other studies have used simulations or even scenarios (which forego a mockup
altogether) since it is a more flexible and convenient way to gather feedback from
potential users (Bahirat et al. 2018; He et al. 2019). Note that even in a field trial, our
system would likely have to be a mockup, since none of the available fitness trackers
implement all of the privacy settings we consider (e.g., the GDPR set). Choosing
a simulated environment is therefore a viable forward-looking solution to measure
users’ privacy preferences regarding these new settings.

It is possible that our participants would have been biased by the fact that our study
was specifically simulating the privacy-setting experience of an application. To reduce
the emphasis on privacy, we avoided mentioning the term “privacy” throughout the
study. Moreover, to limit the differences between our simulation and an actual app
installation, we made the interaction design and the user interface of the app very
realistic, and we asked users to behave like how they usually install an app. In this
light, we note that Lee and Kobsa (2017) recently studied privacy-setting using both
a Web-based survey and a Google Glass field trial. The results were only slightly
different between these two study procedures, and the differences were more likely
due to a difference in the recruited sample than in the realism of the study setup. This
finding is echoed in the human-robot interaction domain, where simulated video-based
trials are often used as a proxy for live interactions with an actual robot. Several works
have shown that this method produces accurate results (Walters et al. 2011; Woods
et al. 2006). As such, we are rather confident that our simulated environment captures
users’ real behaviors. That said, we suggest that a field study would nonetheless be an
interesting endeavor for future work.

Finally, while we propose several recommendation strategies in this paper, we have
not tested their operational efficacy from the user’s perspective. Specifically, we have
conjectured that profile-based approaches reduce the hassle of making privacy settings
but that the manual selection of a privacy profile might be difficult for a user. These
conjectures should be evaluated in a user study, which is another suggestion for future
work. This user study could also evaluate the amount of user control that should be
provided by the PDM.

9.3 Extending the PPloT vocabulary

The vocabulary for the fitness data privacy model is based on the PPIoT ontology that
we designed within our framework for personal data management in the IoT (Sanchez
et al. 2019; Torre et al. 2016c, 2018). PPIoT has been designed following the well-
established methodology in Noy et al. (2001) and evaluated accordingly using the
competency questions method. Moreover, its logical consistency has been evaluated
using the Jena Semantic Web reasoner, and its effectiveness has been tested in a task-
based validation (cf. Brank et al. 2005; Hlomani and Stacey 2014), where it was used for
users’ privacy preference representation and matched against TP privacy statements.
The demonstrator can be found online?!. We are currently working on extending the

21 https://github.com/OdnanOriginal/PDM
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use case scenarios in order to comprehensively evaluate the PDM’s feasibility to model
the user and TP privacy preferences in the domain of IoT personal devices.

Withrespect to GDPR permissions, we acknowledge that our current model includes
the entity type for data sharing and the purpose, but not the means of personal data
processing. This is because it is difficult for end-users to understand the implications of
various means of data processing and related issues (e.g., the meaning of encryption,
differential privacy, etc.). While this would make it a good candidate for decision
support, it also means that it is very difficult to get an accurate understanding of users’
preferences regarding various means of data processing. We plan to carefully study
this issue in future work, at which point we can address it in an update to our PPIoT
vocabulary.

9.4 Extending the scope of our work

While our study focuses on fitness trackers, our work can easily be applied to fitness
devices beyond wearables (e.g., mobile phones, smart cardio devices in the gym),
as the settings and even the setting interfaces would likely be very similar. We also
note that the presented approach in this paper has successfully been employed for
public IoT (Bahirat et al. 2018) and household IoT settings (He et al. 2019). One way
the current paper goes beyond this previous work is by explicitly considering GDPR
permissions; this aspect can easily be integrated into this previous work as well, since
it is applicable to any data-accessing entity, not just fitness-based applications.

Our work extends the scope of data collection to what one might call “fourth par-
ties” that may use the data collected by a fitness tracking app. This aspect has not
received a lot of attention in previous work but is relevant in ours, given the GDPR
mandate regarding the free movement of personal data (The European Parliament and
the Council of the European Union 2016). Our approach accounts for this aspect; how-
ever, we admit that it can be further investigated and improved. For example, given the
GDPR notion of free movement of personal data, one could consider a fitness device
as a platform that is not necessarily linked to a specific provider (i.e., a dedicated “third
party”) but that can instead be accessed by any application, pending the user’s permis-
sion. For our future work, we will focus on this aspect more closely, especially given
that major recent privacy breaches have occurred in complex, interdependent bundles
of services (e.g., Facebook and Cambridge Analytica). Our work can be extended by
further studying the complex personal data sharing ecosystems of modern third/fourth
parties (Conger et al. 2013; Kurtz 2018).

10 Conclusion and contribution

In this paper, we presented a data-driven approach to the development of recommen-
dation strategies for supporting users to set permissions regarding their personal data
collected and shared by tracking devices in the fitness domain.

The motivating issue is the complex scenario of data sharing among devices and
third party (TP) applications in the IoT, which makes setting one’s privacy preferences
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an increasingly complex task. The goal is to balance the users’ control over their data
and the simplicity of setting, especially in light of GDPR requirements.

First, we defined a data model of privacy preferences for the fitness domain that
can be represented using the vocabulary of our PPIoT ontology. The data model is
based on the superset of permissions required by the most popular fitness trackers
and includes the permissions specified in the GDPR. The use of a vocabulary aims to
provide an unambiguous and formal representation of the user’s privacy preferences,
regardless of the diverse representations used by the TPs themselves. The PPIoT vocab-
ulary is part of our personal data manager (PDM) framework which is the intended
testbed for the privacy preference recommendation strategies that we propose in this
paper.

Despite the vast variation in user privacy preferences, we managed to find a concise
set of relevant privacy profiles that are able to represent these preferences. With two
subprofiles for each of four subsets of permissions (sets S, A, F and G in the paper), a
total of 16 possible privacy profiles can be recommended to the user. Additionally, we
managed to determine specific subprofile items (“direct prediction’) and questionnaire
items (“indirect prediction”) that serve as predictors for these profiles.

Our results also show interesting semantic relationships between predictors and
privacy settings. In particular, users’ tendency to make friends while using the fitness
tracker is a significant predictor of the fact that they accept smartphone data permission
requests (the S set), answer in-app requests (the A set), and share their fitness tracking
data (the F set).

This study also found that in sharing fitness tracking data, users care more about
“who” will receive that data rather than “what” data are shared specifically. This con-
firms previous studies (Bahirat et al. 2018; Lee and Kobsa 2016) showing no significant
interaction between these two parameters. Our results also show that knowledge about
users’ actions when risks decrease is more useful to give good recommendations than
knowledge about users’ actions when benefits increase.

Finally, we proposed different recommendation strategies and related user inter-
faces for supporting users to set their privacy permissions. They include a fully manual
approach, as well as interactive prediction-based recommendations that are based on
our clustering and classification results. Users can interact with the user interface
by answering the “trigger questions” that are selected by our classifiers as predic-
tors of users’ subprofiles. These recommendation approaches are aligned with the
PPIoT vocabulary: The data model and the recommendation strategies will be used
by the PDM to represent the user privacy preferences and recommend privacy set-
tings.

Even though several works exist on privacy preference modeling, this paper makes
a contribution in modeling privacy preferences for data sharing and processing of
tracked data in the [oT and fitness domain, with specific attention to GDPR compliance.
Moreover, the identification of well-defined clusters of preferences and predictors of
such clusters is a relevant contribution for the design of recommendation strategies
and interactive user interfaces that aim to balance users’ control over their privacy
permissions and the simplicity of setting these permissions.

In this light, our main contribution is a generic method to develop user profiles and
a series of recommendation strategies for privacy management that can be applied
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to any user-tailored privacy decision support system that models and manages users’
privacy permissions, like our PDM. Beyond existing work, we not only develop pri-
vacy profiles, but also identify potential predictors of these profiles. Such predictors
include privacy setting preferences (direct prediction) but also, and more interestingly,
some user traits (indirect prediction): users’ privacy attitudes, the negotiability of their
preferences, and social behavior.

With the limitations discussed in the previous section, our results could be immedi-
ately integrated in personalized services in the fitness domain. In fact, our data model
for the fitness domain has a wide coverage of tracking data that likely include those
used by existing personalized fitness services.

As argued, though, this approach can also be applied to other IoT scenarios (e.g.,
household IoT, public IoT), or even other complex privacy situations (e.g., social
networking, online shopping) as well. We encourage researchers to adopt and further
extend this “User-Tailored Privacy” approach (cf. Knijnenburg 2017) in their own
work.

Appendices

Table 4 Study Questionnaire

Privacy-related attitude questions (7pt scale)

Trust I believe the company providing this fitness tracker is trustworthy in
handling my information

I believe this company tells the truth and fulfills promises related to
the information I provide

I believe this company is predictable and consistent regarding the
usage of my information

I believe this company is honest when it comes to using the
information I provide

General privacy concerns All things considered, the Internet causes serious privacy problems

Compared to others, I am more sensitive about the way online
companies handle my personal information

To me, it is the most important thing to keep my privacy intact from
online companies

I believe other people are too concerned with online privacy issues

Compared with other subjects on my mind, personal privacy is very
important

I am concerned about threats to my personal privacy today

Perceived surveillance I believe that the location of my mobile device is monitored at least
part of the time

I am concerned that mobile apps are collecting too much information
about me

I am concerned that mobile apps may monitor my activities on my
mobile device
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Table 4 continued

Privacy-related attitude questions (7pt scale)

Perceived intrusion I feel that as a result of my using mobile apps, others know about me
more than I am comfortable with

I believe that as a result of my using mobile apps, information about
me that I consider private is now more readily available to others
than I would want

I feel that as a result of my using mobile apps, information about me
is out there that, if used, will invade my privacy

Perceived secondary use I am concerned that mobile apps may use my personal information
of personal information for other purposes without notifying me or getting my authorization

When I give personal information to use mobile apps, I am concerned
that apps may use my information for other purposes

I am concerned that mobile apps may share my personal information
with other entities without getting my authorization

Negotiability of privacy settings questions (YIN for each permission setting)

Would you share the following data if the risks significantly
increased?

Would you share the following data if the benefits significantly
decreased?

Would you share the following data if the risks significantly
decreased?

Would you share the following data if the benefits significantly
increased?

Social behavior questions (7pt scale)

Social influence If your friends exercise, does this influence you to exercise?
If your social media friends exercise, does this influence you to
exercise?
Sociability How often do you meet new friends while you exercise?

Are you open to the idea of meeting new friends while you exercise?

Exercise tendencies questions (7pt scale; multiple choice for What questions)
Exercise attitude How physically healthy are you?

How important is exercise to you?

What do you most often do for exercise?

How often do you exercise?

At what intensity do you work out?

Do you feel you get too much, the right amount, or too little exercise?

What is the main reason you exercise?

Healthy living expertise I understand difference between different types of healthy-living
measures

I know healthy-living measures that most others haven’t even heard of
I know which healthy-living measures are useful to implement

I am able to choose the right healthy-living measures
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Table 5 Table of accuracies

Pick Single smart Direct Privacy Social Negotiability

profile default prediction  attitude behavior (%)

(%) (%) (%) (%) (%)
S Set
Identity 66.67 66.67 66.67 66.67 66.67 66.67
Contacts 83.33 70.00 70.00 56.67 73.33 80.00
Location 83.33 83.33 83.33 83.33 83.33 83.33
SMS 90.00 50.00 70.00 50.00 53.33 73.33
Storage 83.33 56.67 70.00 43.33 46.67 60.00
Camera 80.00 60.00 86.67 60.00 70.00 63.33
Bluetooth 83.33 83.33 83.33 83.33 83.33 83.33
Photographs 80.00 66.67 100.00 60.00 76.66 70.00
Phone 96.67 56.67 76.67 50.00 60.00 80.00
Motion 96.67 96.67 96.67 96.67 96.67 96.67
Media 70.00 76.67 56.67 43.33 33.33 60.00
Mobile Data 76.67 76.67 76.67 76.67 76.67 76.67
Average 82.50 70.28 78.06 64.17 68.33 74.44
A set
First Name 100.00 63.33 100.00 63.33 73.33 56.67
Last Name 96.67 60.00 96.67 60.00 70.00 60.00
Gender 76.67 76.67 76.67 76.67 76.67 76.67
Birthday 90.00 60.00 90.00 60.00 63.33 53.33
Height 70.00 70.00 70.00 70.00 70.00 70.00
Weight 70.00 70.00 70.00 70.00 70.00 70.00
Average 83.89 66.67 83.89 66.67 70.55 64.44
F set
Steps 96.67 73.33 96.67 76.67 70.00 76.67
Distance 96.67 73.33 96.67 76.67 70.00 76.67
Elevation 100.00 70.00 100.00 73.33 73.33 80.00
Floors 96.67 73.33 96.67 76.67 70.00 76.67
Activity minutes ~ 100.00 70.00 100.00 73.33 73.33 80.00
Calories activity ~ 96.67 73.33 96.67 76.67 70.00 76.67
Weight 90.00 60.00 90.00 63.33 70.00 76.67
Sleep 93.33 63.33 93.33 66.67 66.67 80.00
Heart rate 100.00 70.00 100.00 73.33 73.33 80.00
Food logs 90.00 60.00 90.00 63.33 70.00 76.67
Friends 83.33 53.33 83.33 56.67 63.33 70.00
Profile 96.67 66.67 96.67 70.00 76.67 76.67
Location 86.67 56.67 86.67 60.00 66.67 66.67
Device & settings  93.33 63.33 93.33 66.67 73.33 73.33
Average 94.29 66.19 94.29 69.52 70.48 76.19
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Table 5 continued

Pick Single smart Direct Privacy Social Negotiability

profile default prediction  attitude behavior (%)

(%) (%) (%) (%) (%)
G set
SN public 90.00 90.00 90.00 90.00 90.00 90.00
SN friends Only  73.33 53.33 73.33 63.33 60.00 56.67
Health 66.67 60.00 60.00 43.33 40.00 70.00
Other apps 76.67 76.67 76.67 76.67 76.67 76.67
Corporate 80.00 80.00 80.00 80.00 80.00 80.00
Government 86.67 86.67 86.67 86.67 86.67 86.67
Health 86.67 86.67 86.67 86.67 86.67 86.67
Safety 90.00 90.00 90.00 90.00 90.00 90.00
Social 93.33 60.00 100.00 70.00 60.00 63.33
Commercial 73.33 73.33 73.33 73.33 73.33 73.33
Convenience 80.00 73.33 73.33 76.67 66.67 70.00
Frequency 53.33 53.33 53.33 53.00 53.33 53.33
Retention 50.00 40.00 50.00 50.00 43.33 46.67
Average 76.92 71.02 76.41 72.31 69.74 72.56
Overall average 84.74 68.74 83.41 68.52 69.70 73.11
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