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In this paper we extend and improve upon a previously-developed data-driven approach to design privacy-
setting interfaces for users of household IoT devices. The essence of this approach is to gather users’ feedback
on household IoT scenarios before developing the interface, which allows us to create a navigational structure
that preemptively maximizes users’ efficiency in expressing their privacy preferences, and develop a series of
‘privacy profiles’ that allow users to express a complex set of privacy preferences with the single click of a
button. We expand upon the existing approach by proposing a more sophisticated translation of statistical
results into interface design, and by extensively discussing and analyzing the trade-off between user-model
parsimony and accuracy in developing privacy profiles and default settings.
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1 INTRODUCTION

Our everyday life is being revolutionized by all kinds of smart electronic household devices, often
known ‘smart home’ technology. Smart home technology is made possible by recent developments
around the Internet of Things (IoT), and is still in its fledgling stages of development. A study by
PWC [51], suggests that lower levels of Household IoT adoption are primarily due to high cost of
ownership. Interestingly, the second-biggest reason of hesitation towards adoption is privacy and
security concerns [51]. Arguably, such concerns may rise as costs decrease and adoption increases.

Privacy is an inherent trade-off in IoT, because IoT devices cannot provide their services without
collecting data. Moreover, many IoT devices provide personalized services, which requires them to
retain and process the data as well. Preserving users’ privacy therefore means giving them control
over this trade-off, by allowing them to decide what information can be collected about them. Most
household IoT devices have extensive privacy settings, but these are often hidden in the interfaces
of the individual devices, making it difficult for users to set their preferences across their ‘smart
home’ [24]. Having disparate settings on several devices is also at odds with the fact that these
devices are usually interconnected, sharing both user data and opportunities for control across
devices.
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A promising solution to more suitably account for users’ privacy preferences would be to allow
them to control their privacy with global settings for the entire ‘smart home’. But even with a
centralized settings interface (which currently does not exist), users will likely still find it difficult
to translate their preferences into the correct privacy settings [1, 15, 32]. Indeed, the modern ‘smart
home’ has a vast number of household IoT devices—each with several features and interconnections
to other devices—which makes choosing adequate privacy settings a very challenging task that is
likely to result in information and choice overload [56].

What design process allows us to develop a usable privacy-setting interface for household IoT?
The development of usable privacy interfaces commonly relies on user studies with existing systems.
However, this method is not possible in our household IoT scenario, because there currently exists no
centralized household IoT privacy-setting interface. We therefore propose to develop user interface
designs for managing the privacy settings of Household IoT devices using a data driven design
approach: rather than evaluating and incrementally improving an existing interface, we gather
users’ feedback on household IoT scenarios before developing the interface. This approach allows
us to create a navigational structure that preemptively maximizes users’ efficiency in expressing
their privacy preferences. Moreover, it allows us to anticipate the most common privacy settings,
and capture them into a series of ‘privacy profiles’ that allow users to express a complex set of
privacy preferences with the single click of a button.

We first introduced this approach in our previous work [5], where we covered a wide variety of
in-home as well as public IoT scenarios. In this paper, we focus on household IoT in particular, and
further refine our approach to allow us to create more carefully tailored user interfaces. Moving
the context to a more narrow environment shifts the focus of the privacy decision from the entity
collecting information (which was the dominant parameter in our previous work) to a more
contextual evaluation of the content or nature of the information [33]. This results in more complex
decisions, and thereby advances our previous approach.

The main contributions of our paper are:

e Using an intricate mixed fractional factorial study design, we collect a dataset of 1133 partici-
pants making 13596 privacy decisions on 4608 scenarios.

e We perform statistical analysis on this dataset to develop a layered IoT privacy-setting
interface. As our analysis shows more complex decision patterns than our previous work,
we present guidelines to translate our statistical results into a more sophisticated settings
interface design.

e We perform machine learning analysis on our dataset to create a set of “smart profiles" for

our IoT privacy-setting interface. Beyond our previous work, we conduct a deeper analysis

regarding the trade-off between parsimony and accuracy of our prediction models, leading
to a better-informed selection of smart profiles.

Aside from the privacy-setting interface and the smart profiles, we make specific design

recommendations for household IoT devices that can help to minimize users’ privacy concerns.

The remainder of the paper is structured as follows: Section 2 summarizes key elements of related
work. Section 3 provides relevant information of our experiment setup. Section 4 describes our
statistical results which is followed by Section 5 where we discuss our preliminary prototype for
privacy settings. Section 6 presents the machine learning analysis to create a set of “smart profiles".
Section 7 presents two separate interfaces which are modified version of the preliminary interface
to carefully accommodate results from Machine Learning analysis. Finally, Section 9 concludes
with a summary of contributions and pointers to future work.
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2 RELATED WORK

Our goal is to develop intuitive interfaces for IoT privacy settings, using a data-driven approach. In
this section we therefore discuss existing research on privacy-setting interfaces and on privacy
prediction.

2.1 Personalization in lot Systems

One of the key features of IoT environments is that they have a high potential for providing
personalized services to their users [10, 13, 52]. For example, Russell et al. [42] use unobtrusive
sensors and micro-controller to realize a human detection for further providing personalization
in a scenario of a family making use of the IoT in their daily living. Henka et al. [16] propose an
approach to personalize services in (household) IoT using the Global Public Inclusive Infrastruc-
ture’s [53] preference set to describe an individual’s needs and preferences, and then adapting a
smart environment accordingly.

2.2 Privacy in Personalized systems

Researchers have shown that privacy can play a limiting role in users’ adoption of personalized
services [48]. For example, Awad and Krishnan [3] show that privacy concerns inhibit users’ use
of personalized services, and Sutanto et al. [47] demonstrated that privacy concerns can prevent
people from using a potentially beneficial personalized application. Kobsa et al. [27] demonstrate
that the personalization provider is an important determinant of users’ privacy concerns.

Moreover, research has shown users’ willingness to provide personal information to personalized
services depends on both the risks and benefits of disclosure [17, 19, 39], and researchers therefore
claim that both the benefits and the risks meet a certain threshold [49], or that they should be in
balance [7].

2.3 Privacy in loT

The argument that using user-generated data for personalization can result in privacy concerns has
also been made in IoT environments [59]. One of the first examples in this regard was the work by,
Sheng et al. [45], who showed that users of “u-commerce” services (IoT-driven mobile shopping)
felt less inclined to use personalized (rather than non-personalized) u-commerce services, unless
the benefits were overwhelming (i.e., providing help in an emergency).

In response, researchers have proposed frameworks with guidelines for evaluating the security
and privacy of consumer IoT applications, devices, and platforms [31, 38]. Most of these guidelines
are focused on minimizing data acquisition, storage, and collection sources. Along these guidelines,
several researchers have proposed architectures that restrict unwanted access to users’ data by IoT
devices. For example, Davies et al. propose “privacy mediators” to the data distribution pipeline
that would be responsible for data redaction and enforcement of privacy policies even before the
data is released from the user’s direct control [8]. Likewise, Jayraman et als privacy preserving
architecture aggregates requested data to preserve user privacy [20].

Other research has considered IoT privacy from the end-user perspective [12], both when it
comes to research (e.g., Ur et al. investigated how privacy perceptions differ among teens and their
parents in smart security systems installed in homes [50]) and design (e.g., Williams et al. highlight
the importance of designing interfaces to manage privacy such that they are usable to the end
users of IoT devices [56], and Feth et al. investigated the creation of understandable and usable
controls [12]). The current paper follows this approach, by outlining a novel methodology for the
development of usable and efficient privacy-setting interfaces and applying it to household IoT
privacy management.
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2.4 Existing privacy control schemes

Smartphones give users control over their privacy settings in the form of prompts that ask whether
the user allows or denies a certain app access to a certain type of information. Such prompts are
problematic for 10T, because IoT devices are supposed to operate in the background. Moreover, as
the penetration of IoT devices in our homes continues to increase, prompts would become a constant
noise which users will soon start to ignore, like software EULAs [14] or privacy policies [21].

Pejovic and Musolesi [37] presented the design and implementation of an efficient online learner
that can serve as a basis for recognizing opportune moments for interruption. The design of the
library is based on an in-depth study of human interruptibility. Comparatively, our work tries to
find the most suitable privacy-setting profile for each user based on their privacy preference on
different household IoT scenarios.

2.5 Privacy-Setting Interfaces

Beyond prompts, one can regulate privacy with global settings. The most basic privacy-setting
interface is the traditional “access control matrix”, which allows users to indicate which entity
gets to access what type of information [44]. This approach can be further simplified by grouping
recipients into relevant semantic categories, such as Google+’s circles [55]. Taking a step further,
Raber et al. [40] proposed Privacy Wedges to manipulate privacy settings. Privacy Wedges allow
users to make privacy decisions using a combination of semantic categorization (the various wedges)
and inter-personal distance (the position of a person on the wedge). Users can decide who gets to
see various posts or personal information by “coloring” parts of each wedge.

Privacy wedges have been tested on limited numbers of friends, and in the case of household IoT
they are likely to be insufficient, due to the complexity of the decision space. To wit, IoT privacy
decisions involve a large selection of devices, each with various sensors that collect data for a
range of different purposes. This makes it complicated to design an interface that covers every
possible setting [56]. A wedge-based interface will arguably not be able to succinctly represent such
complexity, and therefore either be impossible, or still lead to a significant amount of information
and choice overload.

We propose a data-driven approach to solve this problem: statistical analysis informs the con-
struction of a layered settings interface, while machine learning-based privacy prediction helps us
find smart privacy profiles.

2.6 Privacy Prediction

Several researchers have proposed privacy prediction as a solution to the privacy settings complexity
problem—an approach known as “user-tailored privacy” (UTP) [23]. Systems that implement UTP
first predict users’ privacy preferences and behaviors based on their known characteristics. They
then use these predictions to provide automatic default settings or suggestions in line with users’
disclosure profiles, to educate users’ about privacy features they are unaware of, to tailor the
privacy-setting user interfaces to make it easier for users to engage with their preferred privacy
management tools, or to selectively restrict the types of personalization a system is allowed engage
in.

Most existing work in line with this approach has focused on providing automatic default settings.
For example, Sadeh et al. [43] used a k-nearest neighbor algorithm and a random forest algorithm
to predict users’ privacy preferences in a location-sharing system, based on the type of recipient
and the time and location of the request. They demonstrated that users had difficulties setting
their privacy preferences, and that the applied machine learning techniques can help users to
choose more accurate disclosure preferences. Similarly, Pallapa et al. [36] present a system which
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can determine the required privacy level in new situations based on the history of interaction
between users. Their system can efficiently deal with the rise of privacy concerns and help users in
a pervasive system full of dynamic interactions.

Dong et al. [9] use a binary classification algorithms to give users personalized advice regarding
their privacy decision-making practices on online social networks. They found that J48 decision
trees provided the best results. Li and et al. [29] similarly use J48 to demonstrate that taking the
user’s cultural background into account when making privacy predictions improves the prediction
accuracy. Our data stems from a culturally homogeneous population (U.S. Mechanical Turk workers),
so cultural variables are outside the scope of our study. We do however follow these previous works
in using J48 decision trees in our prediction approach.

We further extend this approach using clustering to find several smart default policies (“profiles”).
This is in line with Fang et al. [11], who present an active learning algorithm that comes up with
privacy profiles for users in real time. Since our approach is based on an existing dataset, our
algorithm does not classify users in real time, but instead creates a static set of profiles ‘offline’,
from which users can subsequently choose. This avoids cold start problems, and does not rely
on the availability of continuous real-time behaviors. This is beneficial for household IoT privacy
settings, because users often specify their settings in these systems in a “single shot”, leaving the
settings interface alone afterwards.

Ravichandran et al. [41] employ an approach similar to ours, using k-means clustering on users’
contextualized location sharing decisions to come up with several default policies. They showed that
a small number of policies could accurately reflect a large part of the location sharing preferences.
We extend their approach to find the best profiles based on various novel clustering approaches,
and take the additional step of designing user interfaces that incorporate the best solutions.

2.7 Data-driven design

In our previous work [5], we leveraged data collected by Lee and Kobsa [28], which asked 200
participants about their intention to allow or reject the IoT features presented in 14 randomized
scenarios. They varied the scenarios in a mixed fractional factorial design along the following
dimensions: ‘Who’, ‘What’, ‘Where’, ‘Reason’, ‘Persistence’.

We conducted a statistical analysis on this dataset to determine the relative influence of these
parameters on users’ privacy-related decisions. The outcome informed the design of a ‘layered
interface’, which presents privacy settings with the most prominent influence first, relegating less
prominent aspects to subsequently lower layers. Users can use this interface for making manual
privacy settings.

We also conducted a machine learning analysis to predict participants’ reactions to the scenarios.
We used the outcomes of this analysis to develop a “smart” default setting, which preempts the need
for many users to manually change their settings [46]. However, since people differ extensively in
their privacy preferences [35], it is not possible to achieve an optimal default that is the same for
everyone. Instead, different people may require vastly different settings [25, 35, 57]. By partitioning
the participants in a number of clusters, we were able to construct a number of ‘privacy profiles’,
which represented a selection of default settings for the user to choose from. These profiles automate
(part of) the privacy-setting task.

As noted in the introduction, our current paper builds upon this existing work by applying it to
a newly collected dataset focused on household IoT privacy decisions, and by refining both the
statistical and machine learning procedures underlying this approach. The resulting procedure
can be considered a blueprint for researchers interested in applying data-driven design to their
(privacy-)settings interfaces.
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3 EXPERIMENTAL SETUP

To develop our data-driven design approach, we collected a new dataset of users’ privacy behaviors
in various IoT contexts. In this section, we first discuss the factorial procedure by which we
developed 4608 highly specific 10T scenarios, as well as the questions we asked participants to
evaluate these scenarios. We then describe the participant selection and experimental procedures
used to collect over 13500 responses from 1133 participants.

3.1 Contextual Scenarios

The scenarios evaluated in our study are based on a full factorial combination of five different
Parameters: Who, What, Purpose, Storage and Action. A total of 8(who) * 12(what) = 4(purpose) *
4(storage) = 3(action) = 4608 scenarios were tested this way.

The scenarios asked participants to imagine that they were owners and active users of the
presented IoT devices, trying to decide whether to turn on or off certain functionalities and/or data
sharing practices. To avoid endowment effects, the scenarios themselves made no indication as to
whether the functionality was currently turned on or off (such endowment effects were instead
introduced by manipulating the framing of the Decision question; see section 3.2). An example
scenarios is: “Your smart TV (Who) uses a camera (What) to give you timely alerts (Purpose). The data
is stored locally (Storage) and used to optimize the service (Action).” This scenario may for example
represent a situation where the smarthome system has detected (via camera) a delivery of package
and then alerts the user (via the smart TV) about its arrival. In this particular scenario we note that
the video data is stored locally to optimize service; this could mean that the smarthome system
uses the video stream to (locally) train a package detection algorithm. Similarly, another example
of scenario is: “Your Smart Assistant uses a microphone to detect your location in house. The data is
stored on a remote server and shared with third parties to recommend you other services.” Similarly,
this scenario could represent a situation where the smarthome has detected (via microphone) it’s
user’s location in the house and this information is shared to smart assistant. In the scenario, the
data is stored on remote server and shared with third parties so that it can recommend additional
services (like weather or local transportation) via third parties to the user.

The levels of all five parameters used in our experiment are shown in Table 1. The parameters
were highlighted in the scenario for easy identification, and upon hovering the mouse cursor
over them each parameter would show a succinct description of the parameter. Figure 34 in the
Appendix shows a screenshot of a scenario as shown to participants in the study. A thirteenth
scenario regarding the interrelated control of various IoT devices (e.g. “You can use your smart
TV to control your smart refrigerator”) was also asked, but our current analysis focuses on the
information-sharing scenarios only.

The parameters used in the current study deviate from the ones in the Lee and Kobsa [28] dataset.
In our previous work we observed that the Where parameter in this dataset did not have a significant
effect on user decision making [5], hence we removed it from the scenarios in the current study.
Likewise, in public IoT encounters are often ephemeral, so persistent tracking is rather uncommon.
Hence, we removed Persistence of tracking from the scenarios as well, since this parameter is much
more relevant in public IoT than in household IoT. The original Reason parameter is similar to the
current Purpose and Action parameters, although the reasons/purpose for tracking are obviously
different in public IoT than in household IoT.

Moreover, we learned from the qualitative feedback in our previous study that the secondary
use of information was a prominent concern among users of 10T systems. Hence, we consider
Purpose as the primary purpose of tracking, separate from Action, a secondary purpose that requires
Storage—a parameter we added because it is possible for household IoT systems to operate (and
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thus store data) locally, and because the sharing of data with third parties is not as common in
household IoT as in public IoT.

3.2 Scenario Evaluation Questions

The first question participants were asked about each scenario was whether they would enable or
disable the particular feature mentioned in scenario (Decision). Subsequently, they were asked about
their attitudes regarding the scenario in terms of their perceived Risk, Appropriateness, Comfort,
Expectedness and Usefulness regarding the presented scenario (e.g., “How appropriate do you think
this scenario is?”). These questions were answered on a 7-point scale (e.g., “very inappropriate” to
“very appropriate”). In every 4th scenario, the Risk and Usefulness questions were followed by an
open question asking the participants to describe the potential Risk and Usefulness of the scenario.
We asked these question mainly to encourage participants to carefully evaluate the scenarios. A
screenshot of the questions asked about each scenario is depicted in Figure 34 in the Appendix.

The framing and default of the Decision question were manipulated between-subjects at three
levels each: positive framing (“Would you enable this feature?”, options: Yes/No), negative framing
(“Would you disable this feature?”, options: Yes/No) or neutral framing (“What would you do with
this feature?”, options: Enable/Disable); combined with a positive default (enabled by default),
negative default (disabled by default), or no default (forced choice).

3.3 Participants and Procedures

To collect our dataset, 1133 adult U.S.-based participants (53.53% Female, 45.75% Male, 8 participants
did not disclose) were recruited through Amazon Mechanical Turk. Participation was restricted to
Mechanical Turk workers with a high reputation (at least 50 completed tasks, average accuracy
of > 95%). Participants were paid $2.00 upon successful completion of the study. The participants
were warned about not getting paid in case they failed attention checks (see below).

The study participants represented a wide range of ages, with 9 participants less than 20 years old,
130 aged 20-25, 273 aged 25-30, 418 aged 30-40, 175 aged 40-50, 80 aged 50-60, and 43 participants
over 60 years old (5 participants did not disclose their age). This significant increase in participants
over the Lee and Kobsa [28] dataset is commensurate with our expectation of more complex privacy
decision behaviors in household IoT compared to public IoT.

Each participant was first shown a video with a brief introduction to various smart home
devices, which also mentioned various ways in which the different appliances would cooperate and
communicate within a home. After the video, participants were asked to answer three attention
check questions depicted in Figure 30 in the Appendix. If they got any of these questions wrong,
they would be asked to read the transcript of the video and re-answer the questions. The transcript
is depicted in Figure 31 in the Appendix.

After the introduction video, each participant was presented with 12 information-sharing sce-
narios (and a 13th control scenario, not considered in this paper). These scenarios were selected
from the available 4608 scenarios using fractional factorial design' that balances the within- and
between-subjects assignment of each parameter’s main effect, and creates a uniform exposure for
each participant to the various parameters (i.e., to avoid “runs” of near-similar scenarios). Partici-
pants were asked to carefully read the scenario and then answer all questions about it. Two of the
13 scenarios had an additional attention check question (e.g., “Please answer this question with
Completely Agree”, see Figure 33 in the Appendix), and there was an additional attention check
question asking participants about the remaining time to finish the study (which was displayed

IThe scenario assignment scheme is available at https://www.usabart.nl/scenarios.csv
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Table 1. Parameters used to construct the information-sharing scenarios. The “codes” are used as abbreviations
in graphs and figures throughout the paper and the Appendix.

Parameter Levels Code
Who: 1. Home Security System SS
Your Smart... 2. Refrigerator RE
3. HVAC System HV
4. Washing Machine WM
5. Lighting System SL
6. Assistant SA
7.TV TV
8. Alarm Clock SC
What: 1. Home Security System CSE
...uses information | 2. Refrigerator CRE
collected by your... | 3. HVAC System CHV
4. Washing Machine CWA
5. Lighting System CLI
6. Assistant CAS
7.TV CTV
8. Alarm CAL
9. uses a location sensor CLO
10. uses a camera CCA
11. uses a microphone CMP
12. connects to your smart phone/watch | CSW
Purpose : 1. detect whether you are home PH
...to... 2. detect your location in house LH
3. automate its operations AO
4. give you timely alerts TA
Storage: 1. locally L
The data is stored... | 2. on remote server R
3. on a remote server and T
shared with third parties
Action: 1. optimize the service o
...and used to... 2. give insight into your behavior I
3. recommend you other services R
4. [None] N

right there on the same page, see 32 in the Appendix). Participants rushing through the experiment
and/or repeatedly failing the attention check questions were removed from the dataset.

4 INSPECTING USERS’ DECISIONS

In this section we explain the different regression analyses performed on the dataset to understand
how different scenario parameters affected the decisions made by participants. We begin by ex-
plaining the effects of scenario parameters on participants’ decision to enable or disable the feature
mentioned in the scenario. Similar to Bahirat et. al., we also present the results of the mediation
analysis, which are on the lines of attitude-behavior models [2, 5]. As shown in Figure 1, we test
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ATTITUDES
(Comfort, Risk,
etc.)

PARAMETERS
(Who, What,
etc.)

DECISION
(Enable/Disable)

Fig. 1. Different tests conducted for mediation analysis

whether participants’ attitudes mediate the effects of the scenario parameters on their decisions.
This mediation analysis involves the following tests:

Test 1: The effect of parameters (Who, What, Purpose, Storage, Action) on attitudes (Risk,
Comfort, Appropriateness, Expectedness and Usefulness).

Test 2: The effect of attitudes on decision.

Test 3: The effect of both parameters and attitudes on decision.

If, tests 1 and 2 are significant and test 3 reveals a drastic reduction in the conditional direct effect
of parameters, then we can say that the effects of scenario parameters on participant’s decision are
mediated by their attitudes [5].

Finally, we present a post-hoc analysis of differences between individual levels of the parameters
on attitudes and decision.

4.1 Effect of scenario parameters on decision

To understand the effect of the scenario parameters on participants’ allow/reject decision, we
developed a generalized linear mixed effects regression (glmer) with a random intercept (to account
for repeated measures on the same participant) and a logit link function (to account for the fact
that the outcome variable is binary). We used a forward stepwise approach, where we added the
strongest remaining parameter into the model into the model at each step and then comparing it
using ANOVA tests against the previous model. If new parameter makes a significant improvement
to the previous model, it has a significant overall effect on the outcome variable. Once all significant
main effects are added to the model, two-way interaction effects are tested one by one.

Table 2 shows the effects of the parameters on the allow/reject decision. All parameters had a
significant effect. Particularly, Storage had the strongest effect on participants’ decisions, followed
by What, Who and Purpose (all similar) and finally Action.

Moreover, we find many significant interaction effects, but some of them are not substantial
compared to the main effects’. Substantial two-way interaction effects were observed between
Who, What and Purpose. It should be noted that the interactions are added separately, not
accumulatively. This reduces overfitting and multicollinearity.

4.2 Effect of scenario parameters on attitudes

Test 1 of the mediation model is a test of the effect of the scenario parameters on participants’
attitudes. For this we developed a separate linear mixed effects regression model (Imer) model
with a random intercept (to account for repeated measures on the same participant) for each

%Very small but still significant interaction effects are a common occurrence in the analysis of large datasets.
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Table 2. Effect of scenario parameters on decision

Model X2 | df | p-value
decision ~ (1|sid)

+storage 1487.76 2 | <.0001
+purpose 206.97 | 11 | <.0001
+what 202.48 31 <.0001
+who 195.91 7 | <.0001
+action 77.20 | 3| <.0001
Interactions

+what:who 138.03 | 77 | <.0001
+who:purpose 87.92 | 21 | <.0001
+what:purpose 68.30 | 33 .0002

Table 3. Effect of scenario parameters on appropriateness

Model df | Chi.Sq. | p-value
appropriateness ~ (1|sid) 3

+storage 5| 2346.19 | <.0001
+what 16 | 398.63 | <.0001
+purpose 19 | 359.98 | <.0001
+who 26 | 179.09 | <.0001
+action 29 91.05 | <.0001
Interactions

+what:who 106 | 167.01 | <.0001
+who:purpose 50 | 113.73 | <.0001
+what:purpose 62 55.67 .0081

dependent variable (Risk, Comfort, Appropriateness, Expectedness and Usefulness), using the
scenario parameters as independent variables. As in the previous section, we took a forward
stepwise approach.

Tables 3-7 show the effects of the parameters on the different attitudes. All parameters had a sig-
nificant effect on all attitudes. Substantial two-way interaction effects were again observed between
Who, What and Purpose. Again, the interactions are added separately, not accumulatively.

4.3 Effect of attitudes on decision

Test 2 of the mediation model is a test of the effect of participants’ attitudes on their allow/reject
decision. We perform this test by creating a glmer model with a random intercept and a logit link
function. Using a forward stepwise approach, we find that all attitudes except Expectedness have
a significant effect on decision (see the top part of Table 8). Specific effects are as follows:

e Each 1-point increase in Comfort (measured on a 7-point scale) results in a 2.30-fold increase
in the odds that the participant will allow the scenario (p < 0.001).

e Each 1-point increase in Usefulness results in a 2.09-fold increase in the odds that the
participant will allow the scenario (p < 0.001).

e Each 1-point increase in Appropriateness results in a 44% increase in the odds that the
participant will allow the scenario (p < 0.001).
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Table 4. Effect of scenario parameters on comfort

Model df | Chi.Sq. | p-value
comfort ~ (1|sid) 3

+storage 5 | 2822.57 | <.0001
+what 16 | 391.10 | <.0001
+purpose 19| 381.69 | <.0001
+action 22| 113.68 | <.0001
+who 29 90.57 | <.0001
Interactions

+what:who 106 | 132.86 | <.0001
+who:purpose 50 89.20 | < .0001
+what:purpose 62 58.24 .0043

Table 5. Effect of scenario parameters on risk

Model df | Chi.Sq. | p-value
risk ~ (1|sid) 3

+storage 5 | 47240.72 | <.0001
+purpose 16 421.08 | <.0001
+action 19 355.65 | <.0001
+who 26 81.35 | <.0001
+what 29 70.64 | <.0001
Interactions

+what:who 106 77.14 | 0.0017
+who:purpose | 50 19.91 | <.0001
+what:purpose | 62 37.19 | 0.0352

Table 6. Effect of scenario parameters on usefulness

Model df | Chi.Sq. | p-value
use fulness ~ (1|sid) 3

+what 5] 93991 | <.0001
+storage 12 | 457.36 | <.0001
+purpose 23| 401.18 | <.0001
+action 26 | 328.88 | <.0001
+who 29 | 117.57 | <.0001
Interactions

+what:who 106 | 214.48 | <.0001
+who:purpose 50 | 184.48 | <.0001
+what:purpose 62 85.39 | <.0001

e Each 1-point increase in Risk results in a 14% decrease in the odds that the participant will
allow the scenario (p < 0.001).
o Expectedness had no signficant influence on the participant’s decision (p = 0.201).

The strongly significant relationship between attitudes and behavior is interesting in light of
the “privacy paradox” [34], an attitude-behavior gap that has been studied extensively by privacy
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Table 7. Effect of scenario parameters on expectedness

Model df | Chi.Sq. | p-value
expectedness ~ (1|sid) 3

+storage 5| 841.24 | <.0001
+who 16 | 425.92 | <.0001
+what 19 | 42231 | <.0001
+purpose 22 | 231.98 | <.0001
+action 29 29.45 | <.0001
Interactions

+what:who 106 | 262.80 | <.0001
+who:purpose 50 | 138.73 | <.0001
+what:purpose 62 84.89 | <.0001

Table 8. Effect of attitudes on decision; conditional effects of parameters are added subsequently

Model x2 | df | p-value
decision ~ (1|sid)

+Comfort 793472 | 1| <.0001
+Usefulness 1249.51 | 1| <.0001
+Appropriateness 149.15 | 1 | <.0001
+Risk 10.90 1 .0009
+Expectedness 1.62 | 1 .201
Adding Scenario Parameters

+action 0.332 3 0.953
+what 13.871 | 11 | 0.2401
+purpose 3.60 3] 0.3069
+storage 14.57 2| 0.0006
+who 24.53 7 | 0.0009

researchers. Arguably, the privacy paradox is an artifact of the fact that general privacy concerns
(which are commonly high) do not match specific behaviors (which subsequently ignore these
general concerns). Since in our study attitudes and behaviors are measured at the same contextual
level, their relationship is much stronger than in other studies. This may explain why we do not
find an attitude-behavior gap.

4.4 Mediation analysis

With tests 1 and 2 of our mediation analysis confirmed, we conduct test 3 by adding the scenario
parameters to the glmer of participants’ decisions on their attitudes. The bottom half of Table 8
shows these conditional effects of the significant scenario parameters on participants’ allow/reject
decision, controlling for their attitudes. Action, What and Purpose are no longer significant in
this model, suggesting that these effects are fully mediated by participants’ attitudes. Storage and
Who are still significant, but their conditional effects are smaller than their marginal effects on
decision (without controlling for attitude, see Table 2). Their chi?s are reduced drastically by 98%
and 87%, respectively. Overall, there was a substantial mediation effect. Figure 2 shows the final
model mediation model.
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X2 = 14.57, p=0.0006
Storage —~ .

X2 = 24.53,

Comfort

Appropriateness

Usefulness

Expectedness

Fig. 2. Final mediation model.

4.5 Post-hoc Results

To understand the effects of different values of each parameter on participants’ various attitudes and
their allow/reject decision, we conducted post-hoc tests using Tukey’s method to adjust p-values
to account for familywise error. This subsection highlights the key insights from these tests. For
an overview of the differences between parameter values, the reader is invited to visually inspect
them by referring to Figures 24-28 in the Appendix.

Storage: Participants perceive more risk (d range = [0.568, 1.707], all ps < .001), are less com-
fortable (d range = [0.538, 1.741], all ps < .001) and find it inappropriate (d range = [0.436, 1.550],
all ps < .001) when their information is shared to ‘third parties’ or ‘stored on a remote server’
as compared to when it is stored ‘locally’. Participants also found it less useful to share their
information with third parties as compared to storing it locally or on a remote server (d range
=[0.28,1.02], p < .001). Interestingly, participants expected it less that the information is stored
locally rather than stored on remote server or shared to third parties (d range = [0.212, 0.894], all
ps < .001). Finally, the odds of enabling a feature when information is stored locally were 1.96
times higher than when information is stored on a remote server (p < .001) and 8.36 times higher
than when information is shared with third parties (p < .001).

Action: Participants were less comfortable (d range = [0.158, 0.348], all ps < .001) and found it
more risky (d range = [0.145, 0.262], all ps < .001) when their information is used to give them
recommendations instead of optimizing services or giving them insight into their behavior. Sharing
information was also found less useful (d = 0.293, p < .001) and less appropriate (d = 0.256,
p < .001) for recommendation purposes as opposed to when the scenario did not specify any
purpose. Participants also expected it less (d = 0.123, p = .0021) when their information was being
shared for recommendation purposes as opposed to when the scenario did not specify any purpose.
Finally, the odds of enabling a feature for recommendation purposes were 1.53 times lower as
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opposed to when the scenario did not specify any purpose (p < .001). Additionally, the odds of
enabling a feature for optimization purposes were 1.65 times higher than for recommendation
purposes (p < .001) and 1.26 times higher than for giving behavioral insights (p < .001).

Purpose: Participants found it inappropriate (d range = [0.343,0.411], all ps < .001) when
information is collected for the purpose of detecting their presence in the house as compared to the
purposes of automating operations or giving timely alerts, and it was even more inappropriate to
collect information for the purpose of detecting their location in the house (d range = [0.163, 0.574],
all ps < .001). Participants also found it more risky when information is used for location detection
as compared to presence detection (d = 0.598, p < .001), but they found it less risky to share
information for the purpose of giving timely alerts or for automating operations (d range =
[0.550,0.601], p range = [0.002, 0.004]). Participants also found it more useful when information is
collected for the purpose of providing alerts (d = 0.558, p < .001) or for automating operations
(d = 0.603, p < .001) compared to the purpose of detecting their location in the house. Finally,
the odds of enabling a feature were 1.29 times higher for detecting their presence in house than
for detecting their location (p = 0.0002). Moreover, the odds of enabling a feature for the purpose
of giving timely alerts and automating operations were 1.59 (p < .001) and 1.65 (p < .001) times
higher respectively.

Who: Participants expected it more that their smart security systems will access information as
compared to other devices such as their smart HVAC, TV, alarm and washing machine (d range
=[0.267,0.618], all ps < .001). Users perceived data access by their security systems as more useful
compared other devices like their smart refrigerator, washing machine, TV and HVAC (d range
= [0.386, 0.627], all ps < .001). Participants were more comfortable (d = 0.196, p = .002) and found
it less risky (d = 0.263, p < .001) for their security systems to access collected data as compared to
their smart lighting systems. Also, participants were more comfortable (d range = [0.173, 0.356], all
ps < .05) and found it less risky (d range = [0.256, 0.338], all ps < .05) for their lighting systems to
access collected data compared to their smart assistant, TV and alarm clock. Finally, the odds of
users enabling access to their smart security system were higher than to their smart refrigerator
and washing machine by 1.8 times(p < .001), their smart TV by 1.7 times (p < .001) and their smart
alarm clock by 1.6 times (p < .001). We found similar results for participants’ smart assistant which
had odds higher than their smart TV (1.76 times higher, p < .001), their smart alarm clock (1.68
times higher, p < .001), their smart washing machine (1.90 times higher, p < .001) and their smart
refrigerator (1.85 times higher, p < .001).

What: This parameter had twelve different values and there were numerous combinations that
were significant when we checked the post-hoc effects. We limit our discussion to the differences
between the ‘Smart Assistant’ and the other values of this parameter, because these specific
differences are consistently significant. The reader is invited to inspect Figure 27 in the Appendix
for other differences. Participants found it more appropriate (d range = [0.213,0.756], all ps < .001)
and useful (d range = [0.365, 0.683], all ps < .01) when information collected by their smart assistant
was being accessed as compared to other devices like cameras or microphones. The participants
also found it less risky (d range = [0.385, 0.759], all ps < .05) and were more comfortable (d range
= [0.430,0.821], all ps < .01) to grant access to information collected by their smart assistant than
their camera or microphone. Participants also expected more to share information collected by
their smart assistant as compared to other devices such as cameras (d = 0.62, p < .01), microphones
(d = 0.39, p < .01), or their smart alarm clock (d = 0.21, p = .027). The odds of giving access to
information collected by their smart assistant were higher than for cameras by 2.7 times (p < .001),
microphones by 1.8 times (p < .001), their Smart TV by 1.15 times (p < .001) and their smart
washing machine by 1.8 times (p < .001).
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4.6 Defaults and Framing

As outlined in section 3.2, the framing and default of the Decision question in our study were
manipulated between-subjects at three levels each: positive, negative, or neutral framing; combined
with a positive, negative, or no default. We analyze the effects of defaults and framing in a separate
paper [4]. In short, the analysis shows that defaults and framing have direct effects on disclosure:
Participants in the negative default condition are less likely to enable the functionality, while
participants in the positive default condition are more likely to enable the scenario (a traditional
default effect). Likewise, participants in the negative framing condition are more likely to enable
the functionality (a loss aversion effect).

Moreover, there are interaction effects between defaults/framing and attitudes on disclosure: the
effects of attitudes are generally weaker in the positive and negative default conditions than in the
no default condition, and they are also weaker in the negative framing condition.

Importantly, there are no interaction effects between defaults/framing and parameters on atti-
tude or disclosure. Hence, the main findings in this section regarding the structure and relative
importance of the effects of parameters remain the same, regardless of the effects of defaults and
framing. For a more thorough discussion of the effects of defaults and framing, we refer the reader
to [4].

4.7 Discussion

We split this section in two parts: First, we discuss the consequences of our analyses—and especially
our post hoc test results—for the development and adoption of household IoT devices. Second, we
discuss how our results can inform the design of household IoT privacy-setting interfaces.

4.7.1 Consequences for the development and adoption of household loT devices. In the intro-
duction we mentioned that privacy risk is an increasingly important barrier to the adoption of
household IoT devices. Interestingly, though, in our study Comfort, Usefulness and Appropriateness
had a stronger effect on users’ allow/reject decisions than Risk. This suggests that IoT devices with
a trust-inspiring design, a strong value proposition, and a clear explanation of the appropriateness
of their data collection practices can overcome initial perceptions of privacy risk.

The trade-off between Comfort, Usefulness and Appropriateness embodies an interesting trade-
off: Usefulness is associated with the utility of a feature, whereas Appropriateness is a contextual
evaluation (is this acceptable given the situation?) and Comfort is a self-relevant evaluation (is this
acceptable for me?).

The interaction between What, Who, and Purpose also suggests that users make context-
relevant evaluations: scenarios are not accepted based on the sum of their components; rather,
certain combinations of devices and purposes are more acceptable than others. While this is outside
the scope of the current paper, future work could look into this context-dependency to find specific
synergistic combinations.

The Storage parameter had the most significant influence on participants’ decision and all
attitudes, but most prominently on Risk. (chi? = 47240.72, p < .001). This indicates that users’ risk
perceptions are mostly dependent on the way household IoT systems store and share their data.
Household IoT device manufacturers who want to reduce risk perceptions may want to opt for
storing all data locally instead of on a remote server (something users are actually more likely to
expect).

Finally, the Action parameter had the least significant influence. Arguably, once users allow
information to be collected, they care less about how exactly it is being used (or possibly, they do
not expect to be able to control how it is being used).
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4.7.2  Designing for loT by prioritizing parameters. The results of our analyses uncover an intuitive
reality about our household IoT scenarios, namely, they consist of two somewhat separate parts:
On the one hand, there is a device (Who) that accesses information collected by another device
(what), for a purpose certain Purpose. At the same time, this the collected information may be
stored somewhere (Storage) and some Action may be performed on it.

For the first aspect, we observed substantial interaction effects between all the three parameters,
indicating that users want to make intricate decisions about what information is going where
and for what purposes. Specifically, Unlike Bahirat et. al. [5], we cannot use an interface with a
separate ‘layer’ for each parameter; the interaction effects suggest that when uses decide on one
parameter, they inherently take another parameter into account. Therefore the settings interface
for device/sensor management should show all three parameters at the same time to allow users to
make these decisions.

For the second aspect, data storage had a very strong impact, while the action had the weakest
impact. Additionally, there were no interactions between these two parameters, nor did they interact
with any of the other parameters. This suggests that data storage and use can be separated in our
privacy-setting interface.

5 PRIVACY-SETTING PROTOTYPE DESIGN

Designers of household IoT privacy-setting interfaces face a difficult challenge. Since there currently
exists no centralized system for setting one’s household IoT privacy settings, designers must rely
on existing data (cf. [28]) or self-collected survey results (cf. this paper) to inform the design of
these interfaces. Moreover, these privacy-setting interfaces will likely be complex, as they require
users to navigate settings for the collection of various types of data for multiple purposes across
various devices.

Our dataset presents a simplified version of possible scenarios one might encounter in routine
usage of smart home technology. Still it is a daunting task to design an interface, even for these
simplified scenarios: We want to enable users to navigate their information collection and sharing
preferences across 12 different sources (What), 7 different devices trying to access this information
Who for 4 different Purposes. Additionally, this information is being stored/shared in 3 ways (Storage)
and being used for 4 different longer-term Actions.

In this section we present our prototype, which is based on the observations made from our
statistical analysis. Section 7 extends this prototype to cover findings from our machine learning
analysis to create default privacy profiles, but before we do so, we first want to design an intuitive
interface that gives users manual control over their privacy settings. This interface should be able
to present a vast amount of settings information in a concise and understandable manner, and
allow some users to set their settings with little effort at a coarse level while still allowing others to
spend the effort to micro-manage their privacy settings in more detail.

Our statistical analysis (see Section 4) reveals what the most significant parameters are in our
dataset, as well as which parameters interact with each other. The results show that the Storage
parameter had by far the strongest effect on participants’ decision to enable/disable the smart home
feature described in the scenario. After Storage, Who, What and Purpose had similar-sized effects.
Moreover, we found fairly strong significant two-way interaction effects between these parameters.
Finally, the Action parameter had a weak but still significant effect.

Based on these results, we decided to split our settings interface into two separate sections:
‘Device/Sensor Management’ and ‘Data Storage & Use’. The landing page of our design (screen 1
in Figure 3) gives users access to these two sections. The former section is based on Who, What
and Purpose and allows users to “Manage device access to data collected in your home” (screen
2-3). The latter section is based on Storage and Action, and allows users to “Manage the storage and
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long-term use of data collected in your home” (screen 4). Both sections are explained in more detail
below.

Device/Sensor Management: This screen (Figure 3, screen 2) allows users to control the
Purposes for which each device (Who) is allowed to access data collected by itself, other devices,
and the smart home sensors installed around the house (What). This screen has a collapsible list
of data-collecting devices and sensors (What). For each device/sensor, the user can choose what
devices can access the collected data (Who; in rows), and what it may use that data for (Purpose; in
columns).

In the example of Figure 3, the user does not give the ‘Refrigerator’ access to information collected
by the ‘Smart Assistant’ for any of the four purposes, while they give the ‘Smart TV’ access to this
data for the purpose of giving ‘timely alerts’. In this example the ‘Smart Assistant’ is allowed to use
its own data to ‘automate operations’ and to ‘know your location in your home’.

Showing Who, What and Purpose at the same time allows users to enable/disable specific combi-
nations of settings—the significant interaction effects between these parameters suggest that this is
a necessity. The icons for the Purpose requirement allow this settings grid to fit on a smartphone or
in-home control panel. We expect that users will quickly learn the meaning of these icons, but they
can always click on ‘T want to know more’ to learn their meaning (see Figure 3, screen 3).

Data Storage & Use: This screen (Figure 3, screen 4) allows users to control how their data
is stored and shared (Storage), as well as how stored data is used (Action). These settings are
independent from each other and from the Device/Sensor Management settings.

For ‘Storage & Sharing’, users can choose to turn storage off altogether, store data locally, store
data both locally and on a remote server, or store data locally and on a remote server and allow the
app to share the data with third parties. Note that the options for Storage are presented as ordered,
mutually exclusive settings. Our scenarios did not present them as such (i.e., participants were free
to reject local storage but allow remote storage). However, the Storage parameter showed a very
clear separation of levels (see Figure 24 in the Appendix), so this presentation is justified. For ‘Data
Use’, the users can choose to enable/disable the use of the collected data for various secondary
purposes: behavioral insights, recommendations, service optimization, and/or other purposes.

In the subsequent sections we describe the results from our machine learning analysis and further
explain how these results impact the designs presented in this section. For this purpose, Section 7
revisits the interface designs presented here.

6 PREDICTING USERS’ BEHAVIORS

In this section we predict participants’ enable/disable decision using machine learning methods.
Our goal is to find suitable default settings for our IoT privacy-setting interface. Consequently, we
do not attempt to find the best possible solution; instead we make a conscious trade-off between
parsimony and prediction accuracy. Accuracy is important to ensure that users’ privacy preferences
are accurately captured and/or need only few manual adjustments. Parsimony, on the other hand,
prevents overfitting and promotes fairness: we noticed that more complex models tended to increase
overall accuracy by predicting a few users’ preferences more accurately, with no effect on other
users. Parsimony also makes the associated default setting easier to understand for the user.

Our prediction target is the participants’ decision to enable or disable the data collection described
in each scenario. The scenario parameters serve as input attributes. These are nominal variables,
making decision tree algorithms such as ID3 and J48 a suitable prediction approach. Unlike ID3, J48
uses gain ratio as the root node selection metric, which is not biased towards input attributes with
many values. Moreover, by using J48 decision trees, the amount of pruning for the model can be
easily manipulated to investigate the trade-off between the accuracy and parsimony. We therefore
use J48 throughout our analysis.
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Fig. 3. Screen 1 (top left) is the landing page of our manual settings interface, screen 2 (top right) is the
Device/Sensor Management page, screen 3 (bottom left) shows the explanation when you click on “I want to
learn more”, and screen 4 (bottom right) is the Data Storage & Use page.
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Table 9. Comparison of clustering approaches (highest parsimony and highest accuracy)

A h Inital | Final # of Complexity A
pproac clusters | profiles | (avg. tree size/profile) ceuracy
Naive (enable all) 1 1 1 46.74%
Naive (disable all) 1 1 1 53.26%
One Rule (Fig. 4) 1 1 3 61.39%
. 1 1 8 63.32%
Overall (Fig. 7) 1 1 264 63.76%
2 2 2 69.44%
2 2 121.5 72.66%
Attitude-based 3 3 2.67 72.19%
clustering (Fig. 9) 3 3 26.67 73.47%
5 4 3 72.61%
5 4 26 73.56%
. 1133 4 2 79.4%
Agglomerative

clustering (Fig. 12) 1133 5 2.4 80.35%
’ 1133 6 3.17 80.60%
2 2 2 74.43%
2 2 151.5 76.72%
3 3 7 79.80%
Fit-based 3 3 65.33 80.81%
clustering (Fig. 16) 4 4 9.25 81.88%
4 4 58.25 82.41%
5 5 4.2 82.92%
5 5 51.4 83.35%

Using Java and Weka’s Java library [58] for modeling and evaluation, we implement progressively
sophisticated methods for predicting participants’ decisions. After discussing naive (enable/disable
all) solutions and One Rule Prediction, we first present a cross-validated tree learning solution that
results in a single “smart default” setting that is the same for everyone. Subsequently, we discuss
three different procedures that create a number of “smart profiles” by clustering the participants
and creating a separate cross-validated tree for each cluster. For each procedure, we try various
numbers of clusters and pruning parameters. The solutions with the most parsimonious trees
and the highest accuracies of each approach are reported in Table 9; more detailed results of the
parsimony/accuracy trade-off are presented in Figures 7, 9, 12 and 16 throughout the paper, and
combined in Figure 20.

6.1 Naive Prediction Model

We start with the naive or “information-less" predictions. Compared to our previous work [5], our
current dataset shows that it is even less amenable to a ‘simple’ default setting: it contains 6335
enable cases and 7241 disable cases, which means that predicting enable for every setting gives us a
46.74% prediction accuracy, while making a disable prediction for every setting gives us an accuracy
of 53.26%. In other words, if we disable all information collection by default, only 53.26% users will
on average be satisfied with this default settings. Moreover, such a default setting disallows any
‘smart home’ functionality by default—arguably not a solution the producers of smart appliances
can get behind.
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T: No

Storage R: No

L: Yes

Fig. 4. A “smart default” setting based on the “One Rule" algorithm (4 nodes, accuracy: 61.39%). Parameter
value abbreviations correspond to the “code” column in Table 1.

Table 10. Confusion matrix for the One Rule prediction

Observed Prediction Total
Enable Disable
Enable | 5085 (TP) | 1270 (FN) | 6355
Disable | 3262 (FP) | 3979 (IN) | 7241

Total 7192 6404 13596

6.2 One Rule Prediction

Next, we use a “One Rule" (OneR) algorithm to predict users’ decision using the simplest prediction
model possible. OneR is a very simple but often surprisingly effective learning algorithm [18]. It
creates a frequency table for each predictor against the target, and then find the best predictor with
the smallest total error based on the frequencies.

As shown in Figure 4, the OneR model predicts users’ decision solely based on the Storage pa-
rameter with an accuracy of 61.39%. Based on this model, if we enable all information-sharing except
with third parties, we will on average satisfy 61.39% of users’ preferences—a 15.3% improvement’
over the naive “disable all” default. Note, though, that this default setting is overly permissive, with
3262 false positive predictions (see Table 10).

6.3 Overall Prediction

Moving beyond a single parameter, we create a “smart default” setting by predicting the en-
able/disable decision with all scenario parameters using the J48 decision tree algorithm. The
resulting tree has an accuracy of 63.76%. As shown in Figure 5, this model predicts users’ decision
on Storage first. It predicts disable for every scenarios with collected data stored on a remote
server and shared with third party. For scenarios that store collected data on remote server without
sharing, the default settings will depend on the ‘purpose’ of information sharing. There is a further
drill down based on ‘who’ and ‘what’. For scenarios that store collected data locally, the default
settings will depend on the ‘what’. There is a further drill down based on ‘who’, ‘what’, and ‘action’.
With this default setting, users would on average be satisfied with 63.76% of these settings—a 19.7%
improvement over the naive “disable all" default.

361.39 / 53.26 = 1.153
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CAL: Yes
CLO: Yes
CLI: Yes

CAS: Yes

T: No

R: Purpose
Storage CHV: Yes

CWA: Purpose
L What

CMP: Yes

CTV: Action

CSW: Yes

CRE: Purpose

CCA: Who

CSE: Yes

Fig. 5. A “smart default” setting with 264 nodes (accuracy: 63.76%). Parameter value abbreviations correspond
to the “code” column in Table 1.

Table 11. Confusion matrix for the overall prediction

Observed Prediction Total
Enable Disable
Enable | 4753 (TP) | 2488 (FN) | 7241
Disable | 2439 (FP) | 3916 (IN) | 6355

Total 7192 6404 13596

On the downside, this “smart default” setting is quite complex—the “smart default” in our previous
work [5] contained only 49 nodes, whereas the “smart default” for our current dataset has 264
nodes. Compared to One Rule algorithm, which only has 4 nodes in its decision tree and is thus
much easier to explain, the accuracy improvement of Smart Default is only 3.8%. This highlights
the trade-off between parsimony and prediction accuracy that we have to make when developing
“smart default” settings. On the upside, though, the prediction of the J48 decision tree algorithm is
more balanced, with a roughly equal number of false positives and false negatives (see Table 11).

To better understand the parsimony/accuracy trade-off, we vary the degree of model pruning
to investigate the effect of increasing the parsimony (i.e., more trimming) on the accuracy of the
resulting “smart default” setting. The parameter used to alter the amount of post-pruning performed
on the J48 decision trees is called Confidence Factor (CF) in Weka, and lowering the Confidence
Factor will incur more pruning. We tested the J48 classifier with a Confidence Factor ranging from
0.01 to 0.25 (the default setting in Weka) with an increments of 0.01.

Figure 6 displays the accuracy and the size of the decision tree as a function of the Confidence
Factor. The X-axis represents the Confidence Factor; the left Y-axis and the orange line represent
the accuracy of the smart default setting; the right Y-axis and the dotted blue line represent the size
of the decision tree for that setting. The highest accuracy, 63.75%, is achieved with the 264-node
decision tree produced by CF = 0.25. The lowest accuracy, 62.9%, is achieved with the 44-node
decision tree produced by CF = 0.19. When CF < 0.16, the decision tree contains only 8 nodes.
The 8-node profile with the highest accuracy is produced by CF = 0.10 with an accuracy of 63.32%.

Figure 7 summarizes accuracy as a function of parsimony. The X-axis represents the number
number of nodes in the decision tree (more = lower parsimony); the Y-axis represents the accuracy
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Fig. 6. Accuracy and parsimony (tree size) of the smart default change as a function of Confidence Factor

of the decision tree. The figure shows the most accurate J48 solution for any given tree size, and
includes the One Rule and Naive predictions for comparison. Reducing the tree from 264 to 8 nodes
incurs a negligible 0.67% reduction in accuracy. This decision tree is shown in Figure 8, and is still
3.1% better than the One Rule prediction model and 18.9% better than the naive “disable all" default.
This more parsimonious “smart default” setting can easily be explained to users as follows:

o All sharing with third parties will be disabled by default.

e Remote storage is allowed for automation and alerts, but not for detecting your presence or
location in the house.

e Local storage is allowed for all purposes.

While the “smart default” setting makes a considerable improvement over a naive default, there
is still a lot of room for improvement—even our best prediction model only correctly models
on average 63.76% of the user’s desired settings. This should come at no surprise, as one of the
most consistent findings in the field of privacy is that people differ substantially in their privacy
preferences [25]. As a result, our “one-size fits all” default setting—smart as it may be—is not very
accurate. Recent work in the field of privacy suggest to tailor the privacy settings to the user to
accommodate for these interpersonal differences [23]. Our previous work therefore moved beyond
“smart default” settings by clustering participants with similar privacy preferences and creating a
set of “smart profiles” covering each of the clusters [5]. The idea is that the accuracy of the tree for
each cluster will likely exceed the accuracy of our overall prediction model.
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PH: No
T: No
LH: No
Storage R: Purpose
AQ: Yes
L: Yes
TA: Yes

Fig. 8. A “smart default” setting with only 8 nodes (accuracy: 63.32%). Parameter value abbreviations corre-
spond to the “code” column in Table 1.

In the remainder of this section we apply existing and new clustering methods with the aim of
creating separate “smart profiles” for each cluster. As our goal is to develop simple, understandable
profiles, we keep the parsimony/accuracy trade-off in mind during this process.

6.4 Attitude-Based Clustering

As shown in Figure 1, our statistical results indicate that the effects of scenario parameters on
users’ decisions are mediated by their attitudes (Risk, Comfort, Appropriateness, Expectedness
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Fig. 9. Parsimony/accuracy comparison for attitude-based clustering

and Usefulness). Therefore, our first attempt to develop “smart profiles” is to cluster participants
with similar attitudes towards the 12 scenarios they evaluated. We averaged the values per attitude
across each participant’s 12 answers, and ran a k-means clustering algorithm to divide them into
2,3, 4, 5, and 6 clusters. We then added the participants’ cluster assignments back to our original
dataset, and ran the J48 decision tree algorithm on the dataset with this additional Cluster attribute
for each number of clusters, varying the Confidence Factor from 0.01 to 0.25 with increments of
0.01. The results are summarized in Figure 9, which displays the most accurate solution for any
given tree size and number of clusters.

All of the resulting decision trees have Cluster as the root node. This justifies our approach,
because it indicates that the Cluster parameter is a very effective for predicting users’ decisions. It
also allows us to split the decision trees at the root node, and a create different “smart profile” for
each subtree/cluster. Note that for some solutions two clusters end up with the same decision tree,
which effectively reduces the number of profiles by 1.

For the 2-cluster solutions (the blue line in Figure 9), the highest accuracy is 72.66%, which is a
14.0% improvement over the best single “smart default” setting. However, this tree has an average
of 121.5 nodes per profile. In comparison, the most parsimonious solution has only 1 node (“disable
all”) for one of the clusters, and 3 nodes (“disable sharing with third parties”) for the other cluster
(see Figure 10). This solution still has an accuracy of 69.44%, which is still an 8.9% increase over the
best single “smart default” setting.

For the 3-cluster solutions (the orange line in Figure 9), the highest accuracy of 73.47% is achieved
by a set of trees with 26.67 nodes on average (a minimal improvement of 1.1% over the best 2-cluster
solution, but with simpler trees), while the most parsimonious solution has a “disable all” and
an “enable all” tree, plus a tree that is the same as the most parsimonious smart default setting
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Cluster 1: No

Cluster T. No

Cluster 2: Storage R: Yes

L: Yes

Fig. 10. The most parsimonious 2-profile attitude-based solution (2 nodes/profile, accuracy: 69.44%). Parameter
value abbreviations correspond to the “code” column in Table 1.

(see Figure 8). This solution has an accuracy of 72.19%, which is a 4.0% increase over the most
parsimonious 2-cluster solution.

The 4-cluster solutions (the grey line in Figure 9) all result in “over-clustering”: all solutions
based on the 4-cluster Cluster parameter result in two profiles with the same subtree, effectively
resulting in a 3-profile solution. The accuracy of these solutions is actually lower than the accuracy
of similar 3-cluster solutions, so we will not discuss them here.

The 5-cluster solutions (the yellow line in Figure 9) are also “over-clustered”, resulting in 4
profiles. The highest accuracy of 73.56% is achieved by a set of trees with 26 nodes—this is about
the same accuracy and parsimony as the most accurate 3-cluster solution. The same holds for the
most parsimonious 5-cluster solution, which has a similar accuracy and parsimony as the most
parsimonious 3-cluster solution.

The accuracy of the 6-cluster solutions (which result in either 4- or 5-profile solutions) is lower
than the accuracy of similar 5-cluster solutions. Therefore, we will not further discuss these results.

Reflecting upon the attitude-based clustering results, we observe in Figure 9 that there is indeed
a trade-off between accuracy and parsimony: the most parsimonious results are less accurate, but
the most accurate results are more complex. Moreover, the 2-profile solutions are about 5% less
accurate than the 3-profile solutions at any level of complexity. The 4-profile solutions do not
improve the solution much further, though.

The 3-profile solution with an average of 18.33 nodes per profile and 73.26% accuracy provides a
nice compromise between accuracy and parsimony. Part of this decision tree is shown in Figure 11:
it contains one “disable all” profile, one “enable all” profile, and a more complex profile with 55
nodes that disallows sharing with third parties and allows remote and local storage depending on
the purpose (not further shown).

6.5 Agglomerative Clustering

The attitude-based clustering approach requires knowledge of users’ attitudes towards the house-
hold IoT information-sharing scenarios, which may not always be available. We developed an
alternative method for finding “smart profiles” that follows a hierarchical bottom-up (or agglomer-
ative) approach, using users’ decisions only. This method first fits a separate decision tree for each
participant, and then iteratively merges these trees based on similarity. In our previous work [5]
only 10 out of the 200 users in the dataset had unique trees fitted to them (all others had an “enable
all” or “disable all” tree), making the merging of trees a rather trivial affair. Our current dataset
has many more participants, and is more complex, making the agglomerative clustering approach
more challenging but also more meaningful.
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Cluster 1: No
Cluster Cluster 2: Yes
T: No
Cluster 3: Storage R: Purpose
L: Purpose

Fig. 11. A 3-profile solution example of attitude-based clustering (18.33 nodes/profile, accuracy: 73.26%).
Parameter value abbreviations correspond to the “code” column in Table 1.

In the first step, 283 participants’ decision trees predict “enable all”, 414 participants’ decision
trees predict “disable all”, while the remaining 436 participants have a multi-node decision tree.

In the second step, a new decision tree is generated for each possible pair of participants in the
“multi-node group”. The accuracy of the new tree is compared against the weighted average of the
accuracies of the original trees. The pair with smallest reduction in accuracy is merged, leaving
435 clusters for the next round of merging. If two or more candidate pairs have the same smallest
reduction in accuracy, priority is given to the pair with the most parsimonious resulting tree (i.e.,
with smallest number of nodes). If there are still multiple pairs that tie on this criterion, the first
pair is picked. The second step is repeated until it reaches the predefined number of clusters, and
the entire procedure is repeated with 20 random starts to avoid local optima.

To fit the trees, we use the J48 classifier with a Confidence Factor ranging from 0.01 to 0.25 with
increments of 0.01. Surprisingly, smaller tree sizes result in a higher accuracy for agglomerative
clustering (see Figure 12). This suggests that without extensive trimming, our agglomerative
approach arguably overfits the data, resulting in a lower level of cross-validated accuracy.

The best 4-cluster solution has an average of 2 nodes per profile and an accuracy of 79.40%—a
24.53% improvement over the “smart default”, and a 7.9% increase over the most accurate 5-cluster/4-
profile attitude-based clustering solution. The decision trees are shown in Figure 13: aside from the
“enable all” and “disable all” profiles, there is a “disable sharing with third parties” profile and a
“local storage only” profile.

The best 5-cluster solution has an average of 2.4 nodes per profile and an accuracy of 80.35%—a
26.02% improvement over the “smart default”, but only a 1.2% improvement over the 4-cluster
agglomerative solution. The decision trees are shown in Figure 14: it has the same profiles as the
4-cluster solution, plus an “allow automation and alerts, but don’t track my presence or location in
the house” profile.

Finally, the best 6-cluster solution® has an average of 3.17 nodes per profile and an accuracy
of 80.68%—a 26.54% improvement over the “smart default”, but no substantial improvement over
the 5-cluster agglomerative solution. The decision trees are shown in Figure 15: it has the same
profiles as the 5-cluster solution, plus a profile that allows local storage for anything, plus remote
storage for any reason except for user profiling (i.e., to recommend other services or to give the
user insight in their behavior).

“There is another solution with slightly fewer nodes per profile (2.67) and a slightly lower accuracy (80.60%).
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Fig. 12. Parsimony/accuracy comparison for agglomerative clustering
Cluster 1: No
Cluster 2: Yes
T: No
Cluster Cluster-3: Storage R: Yes
L: Yes
T: No
Cluster 4: Storage: R: No
L: Yes

Fig. 13. The best 4-profile agglomerative clustering solution (2 nodes/profile, accuracy: 79.40%). Parameter
value abbreviations correspond to the “code” column in Table 1.

6.6 Fit-Based Clustering

We now present a “fit-based” clustering approach that, like the agglomerative approach, clusters
participants without using any additional information. Instead, it uses the fit of the tree models to
bootstrap the process of sorting participants into different clusters. The steps of our algorithm are
as follows:
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Fig. 14. The best 5-profile agglomerative clustering solution (2.4 nodes/profile, Accuracy: 80.35%). Parameter
value abbreviations correspond to the “code” column in Table 1.

Cluster 1: No
Cluster 2: Yes
T: No
Cluster 3: Storage R: Yes
L: Yes
T: No
Cluster 4: Storage R: No
Cluster L: Yes
PH: No
. LH: No
Cluster 5: Purpose AO: Yes
TA: Yes
TN e
Cluster 6: Storage R Action .
} 0O: Yes
L: Yes - No

Fig. 15. The best 6-profile agglomerative clustering solution (3.17 nodes/profile, Accuracy: 80.68% ). Parameter
value abbreviations correspond to the “code” column in Table 1.

e Random starts: We randomly divide participants into k separate groups, and learn a tree for
each group. This is repeated until a non-trivial starting solution (i.e., with distinctly different
trees per group) is found.

o Iterative improvements: Once each of the k groups has a unique decision tree, we test for
each participant which of the k trees best represents their 12 decisions. If this is the tree of a
different group, we switch the participant to this group. Once all participants are evaluated
and put in the group of their best-fitting tree, the tree in each group is re-learned with the
data of the new group members. This then prompts another round of evaluations, and this
process continues until no further switches are performed.
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Fig. 16. Parsimony/accuracy comparison for fit-based clustering

e Repeat: Since this process is influenced by random chance, it is repeated 1,000 times in its
entirety to find the optimal solution. Cross-validation is performed in the final step to prevent
over-fitting.

We perform this approach to obtain 2-, 3-, 4-, and 5-cluster solutions. To fit the trees, we use the
J48 classifier with a Confidence Factor ranging from 0.01 to 0.25 with increments of 0.01. The best
results are summarized in Figure 16.

For the 2-cluster solutions (the blue line in Figure 16), the highest accuracy is 76.72%—a 20.33%
improvement over the “smart default” setting and a 5.6% improvement over the most accurate
2-cluster attitude-based solution. However, this tree has an average of 151.5 nodes per profile. The
most parsimonious solution is exactly the same as the most parsimonious 2-cluster attitude-based
solution (see Figure 10), but with a higher accuracy (74.43%).

For the 3-cluster solutions (the orange line in Figure 16), the highest accuracy of 80.81% is
achieved by a set of trees with 65.33 nodes on average. This is a 26.74% improvement over the
“smart default”, a 10.0% improvement over the most accurate 3-cluster attitude-based solution (but
at a cost of lower parsimony), and a 5.2% improvement over the best 2-cluster fit-based solution.
The most parsimonious solution, on the other hand, has 7 nodes on average, with an accuracy of
79.80%, thereby still outperforming all other 3-profile solutions. The decision trees for this solution
are shown in Figure 17.

For the 4-cluster solutions (the grey line in Figure 16), the highest accuracy of 82.41% is achieved
by a set of trees with 58.25 nodes on average. This is a 29.25% improvement over the “smart default”,
a 3.8% improvement over the 4-cluster agglomerative solution (but at a cost of lower parsimony),
and a 2.0% improvement over the best 3-cluster fit-based solution. The most parsimonious solution,
on the other hand, has 9.25 nodes on average, with an accuracy of 81.88%. It still outperforms all
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Fig. 17. The most parsimonious 3-profile fit-based solution (7 nodes/profile, accuracy: 79.80%). Parameter
value abbreviations correspond to the “code” column in Table 1.
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Fig. 18. The most parsimonious 4-profile fit-based solution (9.25 nodes/profile, accuracy: 81.88% ). Parameter
value abbreviations correspond to the “code” column in Table 1.

other 4-profile solutions, but the agglomerative solution is more parsimonious. The decision trees
for this solution are shown in Figure 18.

For the 5-cluster solutions (the yellow line in Figure 16), the highest accuracy of 83.35% is achieved
by a set of trees with 51.4 nodes on average. This is a 30.05% improvement over the “smart default”,
a 3.8% improvement over the 5-cluster agglomerative solution (but at a cost of lower parsimony),
and a 1.1% improvement over the best 4-cluster fit-based solution. The most parsimonious solution,
on the other hand, has 4.2 nodes on average, with an accuracy of 82.92%. It still outperforms the
5-profile agglomerative solution, but it is slightly less parsimonious. The decision trees for this
solution are shown in Figure 19.
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Fig. 19. The most parsimonious 5-profile fit-based solution (4.2 nodes/profile, accuracy: 82.92% ). Parameter
value abbreviations correspond to the “code” column in Table 1.

6.7 Discussion of machine learning results

Figure 20 shows a comparison of the presented approaches. The X-axis represents the parsimony
(higher average tree size per profile = lower parsimony); the Y-axis represents the accuracy. While
the “smart default” setting makes a significant 15.3% improvement over the naive default setting
(“disable all”), we observe that having multiple “smart profiles” substantially increases the prediction
accuracy even further. The fit-Based clustering algorithm performs the best out of all the approaches,
followed by agglomerative clustering and attitude-based clustering.

The most parsimonious 2-profile fit-based solution (with an accuracy of 74.43%) is the simplest
of all “smart profile” solutions: one profile is simply “disable all”, while the other profile is the same
as our OneR solution: “disable sharing with third parties”. In fact, these profiles are so simple, that
one might not even want to bother with presenting them to the user: in our current interface (see
Figure 3) these defaults are incredibly easy for users to implement by themselves.

The same is true for the 4-profile agglomerative clustering solution (see Figure 13) and the
5-profile agglomerative clustering solution (see Figure 14): these profiles involve little more than a
single high-level setting, which users can likely easily make by themselves.

The 5-profile fit-based solution is the most accurate of all “smart profile” solutions. The most
parsimonious 5-profile fit-based clustering solution (Figure 19) has an accuracy of 82.92%. It has
the following five profiles:

e Enable all

e Enable local and remote storage, but disable third-party sharing

e Enable local storage only

e Enable local storage for everything except location-tracking, enable remote storage for
everything except location- and presence-tracking, and disable third-party sharing

e Disable all

The fourth profile in this list specifies an interaction between between Storage and Purpose—
something that is not possible in our current manual settings interface (which only allows interac-
tions between Who, What, and Purpose). The next section will present a slightly altered interface
that accommodates these profiles.
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Fig. 20. Summary of All our Approaches

There is another 5-profile fit-based solution with a slightly higher accuracy (83.11%) and a
reasonably simple tree (5 nodes/profile on average). This solution is shown in Figure 21. In this
solution, the third profile (“enable local storage only”) is replaced by a slightly more complex
profile (“enable local storage only, but not to recommend other services”). This profile specifies
an additional interaction between Storage and Action. The next section will present a settings
interface that accommodates this profile as well.

Other usable solutions are the 3-profile fit-based solution (Figure 17) or the 4-profile fit-based
solution (Figure 18. However, like almost all of the less parsimonious solutions, these profiles involve
higher-order interaction effects, e.g. between Storage, Purpose, and Action; and between Storage,
Purpose, and Who. Consequently, a rather more complex interface is needed to accommodate
these default profiles.

ACM Trans. Interact. Intell. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.



A Data Driven approach to Designing for Privacy in Household loT 1:33

Cluster 1: No

Cluster 2: Yes R Purpose AO: Yes
Cluster 3: Storage TA: Yes
PH: Yes
LH: No
Cluster L Purpose AQ: Yes
TA: Yes
T: No
Cluster 4: Storage R: No R:No
L Action N: Yes
O: Yes
T No I: Yes
Cluster 5: Storage R: Yes
L: Yes

Fig. 21. A good 5-profile fit-based clustering solution (5 nodes/profile, Accuracy: 83.11%). Parameter value
abbreviations correspond to the “code” column in Table 1.

7 PRIVACY-SETTING PROTOTYPE DESIGN USING MACHINE LEARNING RESULTS

In Section 5 we developed a prototype interface that household IoT users can use to manually
set their privacy settings (see Figure 3). Our machine learning analysis (Section 6) resulted in a
number of interesting solutions for “smart profiles” that would allow users of this interface to set
their privacy settings with a single click (i.e., a choice of profile). While some of these profiles can
be integrated in our prototype (e.g., the most parsimonious 2-profile fit-based solution and the
4-profile and 5-profile agglomerative solutions) other profiles have an interaction effect between
variables that are modeled as independent in our current prototype interface (e.g., the two 5-profile
fit-based solutions presented in Figures 19 and 21).

In this section we therefore present two modified prototypes that are designed to be compatible
with these two 5-profile solutions. These two solutions are not the most accurate, but they produce
a parsimonious set of profiles that require only minimal alterations to our interface design. They
thus provide the optimal trade-off between reduction accuracy, profile parsimony, and interface
complexity.

7.1 Interface for the 5-profile fit-based solution with an accuracy of 82.92%

This machine learning solution (Figure 19) requires an interaction between the Storage parameter
and the Purpose parameter—two parameters that are controlled independently in the prototype
in Figure 3. Our solution is to slightly alter the interface, and add the profile selection page at the
beginning of the interface (see Figure 22):

e Screen 1: On this screen users choose their most applicable default profile. For some users,
the selected profile accurately represents their preferences, while others may want to adjust
the individual settings manually.

e Screen 2: After clicking ‘Next’, users are given the option to select ‘Storage/Sharing &
Device/Sensor Management’ or ‘Data Use’.

e Screen 3: When users select either ‘Storage/Sharing & Device/Sensor Management’ they
first get to set their sharing preferences for ‘local storage’, ‘remote server’ and ‘third party
sharing’ (Storage). Each of these can independently be set to enabled or disabled, but users
can also click on ‘More’.
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e Screen 4: When users select ‘More’, they can manage Who-What-Purpose combinations for
that particular storage/sharing option.

o Screen 5: When users select ‘Data Use’ on screen 2, they get to enable/disable the use of the
collected data for various secondary purposes (Action).

7.2 Interface for the 5-profile fit-based solution with an accuracy of 83.11%

The alternative machine learning solution presented in Figure 21 requires an additional interaction
between the Storage parameter and the Action parameter. This requires us to slightly alter the
interface again (see Figure 23):

e Screen 1: The profile selection screen remains unchanged, with the exception that the ‘Local
storage only’ profile is replaced by the more complex ‘Local Storage & No Recommendations’
profile.

e Screen 2: After clicking ‘Next’, users first get to set their sharing preferences for ‘local
storage’, ‘remote server’ and ‘third party sharing’ (Storage). Each of these can independently
be set to enabled or disabled, but users can also click on ‘More’.

e Screen 3: When users select ‘More’, they are given the option to select either ‘Device/Sensor
Management’ or ‘Data Use’.

e Screen 4: When users select ‘Device/Sensor Management’ they can manage Who-What-
Purpose combinations for that particular storage/sharing option.

e Screen 5: When users select ‘Data Use’ they get to enable/disable the use of the collected
data for various secondary purposes (Action) for that particular storage/sharing option.

7.3 Reflection on design complexity

The interfaces presented in this section have an additional ‘layer’ compared to the original interface
presented in Section 5. This additional layer makes setting the privacy settings manually more
difficult, but it is necessary to accommodate the complexity of the smart profiles uncovered by
our machine learning analysis. On the one hand, this demonstrates the value of developing a
parsimonious machine learning model—the more accurate but more complex profiles that comprise
some of the solutions in Section 6 are not only more difficult to explain to the user, they also contain
more complex interactions between decision parameters, forcing the manual settings interface to
become even more complex. A simple smart profile solution avoids such complexity in the interface.

On the other hand, one should not over-simplify the profiles, lest they become overly generic
and inaccurate in representing users’ privacy preferences. Indeed, when we make our smart profile
solutions more accurate, fewer users will need to make any manual adjustments at all, so we can
allow some additional complexity in the interface.

8 LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of our work, our plans to evaluate the presented interfaces,
and other future work.

One limitation of our work concerns our ethical approach to privacy support. The decisions
regarding the scenarios presented in our work encompass a tradeoff between privacy and utility.
Our paper adheres to a philosophy that considers neither privacy nor utility a morally superior goal:
it is up to the end user to decide upon the balance between these two goals. We acknowledge that
end users vary widely in how they evaluate this balance, hence the goal of our work is to help each
user find the optimal balance that is right for them. From this perspective, we believe that consistent
and coherent privacy profiles are a better starting point for users than taking an “everything oft”
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Fig. 22. Design for 5-Profile solution presented in Section 7.1. From top left, screen 1 is the profile selection
page, screen 2 is the slightly altered landing page of our manual settings interface, screen 3 is the slightly
altered Data Storage page, screen 4 (bottom left) is the Device/Sensor Management page, and screen 5 is the
Data Use page.
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Fig. 23. Design for 5-Profile solution presented in Section 7.2. From top left, screen 1 is the profile selection
page, screen 2 is the slightly altered Data Storage page, screen 3 follows the ‘More’ button to offer access to
screen 4 (bottom left, the Data Use page) and screen 5 (bottom right, the Device/Sensor Management page).
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or “everything on” approach. We acknowledge, though, that other (more paternalistic) moral
standpoints exist, and that our work does not adhere to these standpoints.

We also note that participants in our study made decisions about hypothetical rather than “real
life” scenarios. However, compared to most other privacy studies, our study asks participants
about very specific IoT scenarios, measuring their attitudes and behaviors in the context of these
scenarios. The hypothetical nature of the scenarios is thus a conscious tradeoff here: it is impossible
to measure privacy in 4000+ scenarios without presenting them on a screen.

Another limitation is that the effectiveness of our approach is contingent upon on the benevolence
of the IoT infrastructure provider, and that it is easy for an “evil” provider to tweak the profiles in
their favor (cf. [26]). To that point, we note that the provider of the IoT infrastructure may very well
be a separate entity from the device vendors (similar to how smartphone OS providers are often
separate from smartphone app developers). In that case, it is not in the infrastructure provider’s
interest to “oversell” the IoT functionality, but rather to increase users’ comfort with the use of
their platform.

A limitation regarding our machine learning approach is that it assumes a perfect assignment of
users to profiles. However, in our current approach, users of the profile-based interface make their
own choice as to which profile they want to apply. If they do not make the correct choice, then this
introduces additional uncertainty, and the accuracy of our approach will be substantially lower
than described in our paper. This limitation highlights the importance of the parsimony/accuracy
tradeoff: Users benefit from parsimony in the context of our study, because parsimony makes for
simpler profiles, which are easier to understand and hence easier to choose from. At the same time,
though, these more parsimonious profiles are likely going to be less accurate, which means that
users need to make more manual adjustments to the profile-based settings.

To further explore this tradeoff between parsimony and accuracy, and also to evaluate the
usability of the proposed privacy-setting interface prototypes in this paper, we are in a process
of developing a user study to test these interface prototypes. In this study, we compare several
default/profile solutions: all disabled by default, all enabled by default, two variants of a single
smart default (Figure 4 and Figure 8), two variants of smart profiles (Figure 14 and Figure 23). The
study will also consider different levels of complexity for the manual settings interface.

Aside from this user study, we also intend to expand our work in the direction of conducting a
cross-platform study on IoT privacy. This study would aim at understanding how user perspectives
about privacy differ across different IoT platforms, such as wearable 10T, household IoT, and public
IoT.

9 CONCLUSION

The motivation behind our research was to reduce the information and choice overload associated
with the plethora of choices that users might face while setting their privacy settings in a household
IoT environment. While our work is certainly not the first to propose a new interface for privacy
settings (cf. [40, 54]), textcolorblueour work is unique in its development of a novel data-driven
process that leveraging an understanding of user decision making from a contextual perspective of
a technology to aid the design of more efficient privacy-setting interfaces.

Specifically, whereas it is standard practice to develop privacy-setting interfaces based on user
feedback from user testing on existing interfaces, we gather users’ feedback on IoT scenarios
before developing the interface, and employ statistical and machine learning analyses to develop
a settings interface and a series of ‘smart profiles’ to aid users in their privacy-setting task. The
use of scenarios solves the challenge of creating a privacy-setting interface for technologies that
are still under development. Moreover, in using scenarios, the presented procedure avoids typical
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decision externalities such as default effects, framing effects [6], and decision-context effects [26]
that tend to obfuscate users’ behaviors in more naturalistic studies.

Beyond our previous work [5], the current paper describes a more thorough method for analyzing
potential solutions that span a variety of perspectives on the balance between the number and
accuracy of shortcut solutions (profiles), the complexity of the manual settings interface, and users’
ability to comprehended and control these systems. Our approach provides several options, but it is
up to the designer to decide what the best option is. In some cases this may involve implementing
several potential solutions, and comparing them in a user test or a controlled experiment.

We argue that the exploration of this balance is just as important for many other settings interfaces
as well. Indeed, future work could apply the proposed procedure to other privacy-setting domains,
such as healthcare privacy, drone privacy, and nano-tech privacy. To do this, the researchers have
to identify the parameters that are potentially relevant in the domain under investigation. “Who”
(e.g., for healthcare privacy: primary care physician, specialist, first aid worker, health insurer,
employer) and “what” (e.g., for healthcare privacy: demographics, physical data, chronic illnesses,
medications, past illnesses, past surgeries, allergies) and “purpose” (e.g., for healthcare privacy:
general care, emergency care, epidemic prevention, health research, insurance fraud prevention,
billing) are par for the course, but their actual values will of course differ per domain. Moreover,
each domain will have its own unique considerations (e.g., for healthcare privacy, who has agency
over the data when the user is incapacitated).

Our proposed procedure uses “smart profiles” because IoT privacy decisions are often made
upon installation of the IoT system, and rarely revisited. In contrast, in many of the potential
application domains for our proposed procedure the privacy decisions are repeated and spread
out in time (e.g., in healthcare privacy, privacy decisions have to be made upon each doctor visit).
In those domains, fully “adaptive” privacy mechanisms that use “active tracking” (cf. [22, 30]) are
more suitable. Regardless, our approach is still beneficial in these situations, since such an active
tracking system still needs a manual interface to make corrections to the settings, as well as a (set
of) default setting(s) that is applied upon first use of the system. This would thus still require our
static, profile-based approach.
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A APPENDIX

The legend associated with abbreviations is explained in Table 1
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Familiarity with smart home devices

How familiar are you with smart home devices?

What kind of device comes to mind when you think of a smart refrigerator?

Please mention any particular device(s) or brand(s) you are familiar with. Otherwise, describe in detail what kind
of device you are thinking of.

Have you yourself used any smart refrigerator(s)?

I've never used such I've used such device, | use such device | use such device | use such device
device but only occasionally ~ several times a month ~ several times a week every day

Fig. 29. Open ended questions asked to participants in order to gauge their familiarity with loT.

What is the Internet of Things?

Here is a little test to make sure you paid attention to the video.

Which of the following things can smart household devices infer about you?
whether | am at whether | am who is entering my

home sleeping what room | am in  what is in my fridge house all of these

Which of the following devices was not mentioned on the previous page?

smart lighting ~ smart washing

smart TV smart refrigerator smart alarm clock ~ smart HVAC smart car system machine

Which of the following is not going to happen with your data?

used to improve the

stored locally service disclosed to the public used for advertisement

Fig. 30. Attention check questions asked to participants
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What is the Internet of Things?

Sorry, you got or more of the test questions wrong! Please read the following text again, carefully.

Imagine you are planning to buy a new house and you meet this realtor who shows you a really awesome house.
Apart from its beautiful design and great location, it comes with loads of “Smart” electronic devices, which can
be conveniently controlled using your smartphone:

What kind of devices are we talking about?

A smart refrigerator senses when a product spoils or needs to be replenished, and reminds you when it is
time to buy fresh groceries. It also tracks your family's diet, like how much candy your kids are eating..

A smart HVAC with a thermostat that programs itself based on the season, your body temperature, and
your daily activities. It makes sure that your house is at a comfortable temperature when you arrive home,
and automatically adjusts to when you are away or asleep. It can even adjust the temperature in each room
according to the personal preferences of its occupants. The smart HVAC also keeps track of your total
energy savings.

Smart light fixtures that turn on automatically when you enter a room. The system adjusts the lights in
each room to your preferences and the incoming sunlight. The lights can also wake you up, and adjust the
illumination for an optimal experience when you want to read, concentrate, or relax based on your routine.
The lights can even synchronize with your smart TV for an immersive effect when you watch movies or play
games.

A smart TV that automatically records shows based on your personal preferences. It can detect who is
watching, and suggest shows accordingly. It provides regular updates about your personal life (email,
weather, upcoming events) and the status of other smart devices. It also allows family members to leave
messages for each other that automatically play when the recipient enters the house.

A smart washing machine that knows what kind of clothes you put in it and adjusts the washing cycle
accordingly. The washer automatically runs when electricity rates are lowest. If you are not at home, it
tumbles clothes in fresh air after the cycle is over. Finally, it has an app that you can use to assign laundry
chares to family members, who will be reminded when it is time to load or unload the washer.

» A smart home security system that allows you to check the security of your home via several cameras in
and around the house, as well as smoke detectors and flood sensors. It automatically locks your doors, and
you can set up keyless entry for yourself and your family. You can also talk to people at the door via video,
and let them in remately. The system can identify a walk-in guest as stranger or frequent visitor, and notifies
you accordingly in case you are unaware of their presence.

A smart alarm clock that detects your sleeping routines, as well as your movements during your sleep, to
give you feedback on your sleeping patterns. It knows when you have to go to work based on your
schedule and informs you of current traffic. It gently wakes you by adjusting the lights and turning on your
favorite music. In case of bad weather, it can even automatically call you an Uber.

A smart assistant that provides a gateway to online resources. It can play music from online streaming
services, order preducts from online retailers, and answer questions by searching the internet. A smart
assistant can also be used to control and learn the status of other smart home devices. You can also use it
as an intercom system to talk to other people in your household, and to make hands-free phone calls to
others.

What can these devices do?

These smart devices have embedded location sensors, cameras, and microphones to detect your presence or
your exact location in- and outside the house. They can also connect with each other or with your smartphone or
smartwatch in order to provide timely alerts or to automate their operations. For example, your security system
may connect to your alarm clock to detect when you go to bed and wake up; your light fixtures may use location
sensors to know when you leave a room; your refrigerator may connect to your smartphone to provide recipes
and grocery lists; your washing machine may connect to your HVAC to slightly increase the room temperature
when you hang your laundry to dry.

What happens with your information?

A central feature of the smart devices is that they are connected to the Internet. Sometimes they communicate
and store their information locally; at other times they operate via the cloud or a central server. In some cases the
stored information is additionally used to give you insight in your behavior, to optimize the current service, to
recommend additional services to you, or for advertisement purposes.

How useful is this to you?

As you can see, this house has a lot of novel features. You may find some of these features really useful, or
rather invasive at times. On the next pages, you will find 20 scenarios, and you will be asked to evaluate them.
Please read each scenario carefully before answering the questions.

| | Continue |

Fig. 31. Transcript of video shown to participants if they failed attention checks.

1:45

ACM Trans. Interact. Intell. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:46 Yangyang He, Paritosh Bahirat, Bart P. Knijnenburg, and Abhilash Menon

Questions about you

You are done with the information collection part of the system. We now ask you to answer a few
questions about you.

The remaining part of this study will take about 10 minutes.

Another question to make sure you are not a robot: Approximately how many minutes will the remaining
part of this study take?

10

Continue

Fig. 32. Attention check question asked to participants.

Scenario 4 out of 13
Your smart assistant connects to your smart phone/watch to detect your location in the

into your
behavior.
Would you disable this feature?
yes no
.
How uncomfortable or comfortable do you feel about this scenario?
very somewhat somewhat
uncomfortable  uncomfortable  uncomfortable neutral comfortable comfortable  very comfortable
How useless or useful do you find this scenario?
completely somewhat
useless useless useless neutral somewhat useful useful very useful
Please select completely disagree below.
disagree disagree disagree neutral somewhat agree agree completely agree
0
How risky or safe do you find this scenario?
very risky risky somewhat risky neutral somewhat safe safe very safe
How inappropriate or appropriate do you find this scenario?
very somewhat somewhat
inappropriate inappropriate inappropriate neutral appropriate appropriate very appropriate
How unexpected or expected do you find this scenario?
somewhat somewhat
very unexpected unexpected unexpected neutral expected expected very expected

Fig. 33. Attention check question shown while participants are answering questions per scenario.
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Scenario 1 out of 13
Your smart lighting system uses information collected by your smart alarm clock to detect

your location in the house. The data is stored on a remote server and used to

as well as shared with third parties.

Data collected by this
device will be shared
with third-party
affiliates.

Would you disable this feature?

yes no

How uncomfortable or comfortable do you feel about this scenario?

very somewhat somewhat
uncomfortable  uncomfortable  uncomfortable neutral comfortable comfortable  very comfortable

How useless or useful do you find this scenario?

completely somewhat
useless useless useless neutral somewhat useful useful very useful

What could be specific benefits to you in this scenario? (be as specific as possible; feel free to
speculate)

How risky or safe do you find this scenario?
very risky risky somewhat risky neutral somewhat safe safe very safe

What could be specific risks to you in this scenario? (be as specific as possible; feel free to speculate)

How inappropriate or appropriate do you find this scenario?

very somewhat somewhat
inappropriate inappropriate inappropriate neutral appropriate appropriate  very appropriate

How unexpected or expected do you find this scenario?

somewhat somewhat
very unexpected unexpected unexpected neutral expected expected very expected

Fig. 34. Example of one of the thirteen scenarios presented to the participants.
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