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Death To The Privacy Calculus?

Abstract

The “privacy calculus” has been used extensively to
describe how people make privacy-related decisions. At
the same time, many researchers have found that such
decisions are often anything but calculated. More re-
cently, the privacy calculus has been used in service of
machine learning approaches to privacy. This position
paper discusses the practical and ethical questions that
arise from this use of the privacy calculus.
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Introduction

Laufer and Wolfe [28,29] coined the term “calculus of
behavior” to refer to the cognitive process that under-
lies people’s disclosure decisions. Many researchers
have since used the term “privacy calculus” to describe
privacy-related decision behaviors [10,11,13,30,33,52],
and it has become a well-established concept in privacy
research [31,37,42]. Other researchers, however, have
demonstrated that people rarely take a truly calculative
approach to privacy decision making, and are often
prone to take mental shortcuts instead [2,48].

We discuss these departures from rationality, how they
come about, and the impact they have on the pre-



sumed normative justifications for existing privacy solu-
tions. This will lead us to a relatively new type of priva-
cy solution, user-tailored privacy, which addresses
some of the ethical questions raised by existing solu-
tions. User-tailored privacy uses the privacy calculus
prescriptively, with the risk/benefit tradeoff serving as
an objective function for machine learning algorithms
[7,14,20]. We will argue that this use of the privacy
calculus raises its own set of practical and ethical ques-
tions that may cause ethical dilemmas. In outlining
these questions, we hope to spark a discussion of the
ethical concerns regarding user-tailored privacy.

Privacy Calculus as a Descriptive Theory?
The privacy calculus is commonly operationalized as a
tradeoff between risk and benefit. The psychological
process behind this tradeoff is often seen as a con-
scious and rational decision process. For example, Li
[31] argues that the privacy calculus can be seen as a
privacy-specific instance of utility maximization or ex-
pectancy-value theory [5,40,46]. These specific deci-
sion theories have been criticized for making unrealistic
assumptions about the rationality of decision-makers
[12,41], and a similar criticism can be leveled against
the privacy calculus itself [18,19].

Rather than being rational, people’s privacy decisions
are influenced by various heuristics, such as infor-
mation on others’ privacy decisions (i.e. “social proof”
[3]), the order of sensitivity in which decisions are be-
ing made (“foot in the door” and “door in the face” [3]),
the overall professionalism of the privacy-setting user
interface (“affect heuristic” [17]), the available options
to choose from (“context non-invariance” [24]), and
the default setting and phrasing of privacy-related re-
quests (“default” and “framing” effects [22,27]).

Given these well-documented departures from rationali-
ty, it is surprising that the privacy calculus is such a
prominent theory of privacy decision making. This may
be because most research on privacy decision making
asks users to evaluate risk and benefit using a retro-
spective and holistic approach rather than looking at
the level of individual decisions [9,13,15,16,39,51,52].
Using this approach, it is hard to invalidate the privacy
calculus, because these retrospective evaluations are
just as likely to be post hoc rationalizations as they are
to be the true motivations behind users’ behaviors.

Indeed, users’ privacy decisions are much more akin to
“plans” in Activity Theory [6]: both risk and benefit are
anticipated (in that users will usually not know the con-
sequences of their decision up front and can thus only
base their judgments on past outcomes) and contextu-
alized (in that they have to regard the consequences of
taking a specific action with regard to a specific recipi-
ent in a specific context) [10,32,39,43]. This contextu-
alized anticipatory nature of privacy decisions is also at
the core of Altman’s privacy regulation theory [4], Nis-
senbaum’s contextual integrity [34], and Petronio’s
communication privacy management [38]. In other
words, privacy decisions are much more complex than
the privacy calculus presumes them to be. This has
consequences for the two main privacy paradigms in
place today: notice and choice, and privacy nudging.

Consequences for Notice and Choice

Notice and choice are prerequisites of the privacy calcu-
lus: notice enables us to assess risks and benefits, and
choice is needed to make meaningful tradeoffs. Howev-
er, the contextualized nature of privacy behaviors
means that users need to make separate choices for
each context, resulting in complex privacy-setting in-
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Figure 1: A schematic represen-
tation of user-tailored privacy:

The system first measures users’
characteristics and privacy-
related behaviors.

It uses these measurements to
create a personalized model of
the users’ willingness to disclose
different types of data to different
types of recipients, in the context
of other factors that may influ-
ence their decision.

Finally, it adapts the user inter-
face to the predicted privacy de-
cision, by changing the default
privacy setting, giving an explicit
recommendation, and/or provid-
ing a context-based justification
for the predicted behavior.

terfaces. Similarly, the anticipated nature of privacy
means that even with extensive notice, users have im-
perfect knowledge about the consequences of their ac-
tions. Complexity and incomplete information often
result in heuristic decision-making [8]. Notice and
choice may thus seem like an ethical way of providing
privacy protection from a privacy calculus perspective,
but if you see privacy behaviors as contextualized an-
ticipatory reflections, then notice and choice are not
enough to protect users’ privacy.

Consequences for Privacy Nudging

Privacy nudging attempts to make it easier to take pri-
vacy-preserving actions by creating a choice architec-
ture that promotes benefit and avoids risk [1,47]. A
privacy nudge would promote safe features (e.g. high-
lighting or enabling them by default) and dissuade us-
ers from using risky features (e.g. hiding or disabling
them by default). However, because privacy behaviors
are contextualized, users’ actions are based on complex
identities that include their culture, world view, life ex-
perience, personality, intent, and so on, and they may
thus perceive different features as “risky” and “safe”
[25,50]. Moreover, any given user’s preferences may
change if the context changes. Nudging may seem like
an ethically justifiable practice from a privacy calculus
perspective, but if you see privacy behaviors as contex-
tualized anticipatory reflections, then it becomes clear
that nudges are rarely good for everyone, and may
thus threaten consumer autonomy [44,45].

Privacy Calculus as a Prescriptive Theory?
How can we move beyond the “one-size-fits-all” ap-
proach to privacy embodied in both nudges and notice
and choice? A more recent paradigm is that of “user-
tailored privacy” (see Figure 1), which provides person-

alized decision support by first predicting users’ privacy
preferences and behaviors and then providing adaptive
nudges (e.g. automatic initial default settings). The
most prominent examples of user-tailored privacy use
the privacy calculus in a prescriptive manner, with the
risk/benefit tradeoff serving as an objective function for
machine learning algorithms [7,14,20]. In this prescrip-
tive approach, the user is no longer responsible for de-
termining the risks and benefits, and making the
tradeoff; instead, an algorithm will automatically make
this tradeoff, taking the context, the user’s known
characteristics, their decision history, and the decision
history of like-minded other users into account.

The reliance on machine learning means that the sys-
tem will alleviate the decision burden via a nudge that
presumably has no normative “valence” but is instead
based on each users’ actual preferences within the de-
cision context [20]. This approach raises its own set of
practical and ethical questions though. These questions
and their normative consequences are discussed below.

What contextual variables should be included?

Earlier we suggested contextual variables that influence
users’ privacy decision behavior: the user, the infor-
mation, and the recipient. Research shows that even
when these parameters are equal, each user still shows
variable behavior from one instance to the next [36]. It
is thus possible that there are other contextual varia-
bles that should be included in the model as well. How-
ever, measuring too many contextual variables will turn
the procedure itself into a threat to user privacy.

How should risk and benefit be determined?
One way to determine the risk of a privacy-related be-
havior is to measure its prominence among users [20].
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Figure 2: The moral dilemmas
regarding user-tailored privacy:

How much information is needed
to accurately model risk and ben-
efit in context?

Should risk and benefit be meas-
ured in a subjective or objective
manner?

Should the risk/benefit tradeoff
be modeled as a compensatory or
a non-compensatory decision?

Should the user-tailored adapta-
tion take a passive or active
form?

Behavior may confound risk with other factors, which
will need to be disentangled [14]. But even when
measured carefully, behavior is still open to external
influences (as discussed earlier), creating an imbalance
between attitudes and behaviors (i.e., the “privacy par-
adox” [35,48]). One could also measure risk percep-
tions. These may differ per user, though, which may
result in a computationally intractable definition of risk.
Finally, one could opt for expert opinions of risk, but
getting contextualized expert risk estimates is challeng-
ing, given the vast range of possible contexts.

How should benefit be determined?

If information is collected for personalization purposes,
then it may be possible to specify an objective benefits
calculation, driven by the predicted utility of the infor-
mation for the system [20]. Adaptive systems can often
capitalize on unanticipated correlations between per-
sonal information and preferences, so this “objective”
benefit may sometimes be quite different from users’
perception of benefit. Adequate explanations or justifi-
cations can reduce the conflict that this may generate.
Systems in which disclosure has a less well-defined
benefit must rely on perceived benefit regardless.

How should the tradeoff be modeled?

One possible implementation of a risk/benefit tradeoff
is a linear function of the two [7]. In this function the
relative weight of risk versus relevance can be dynami-
cally estimated for each user, or there may be different
user-tailored weights for various types of information,
since privacy behaviors are multidimensional [25,50]. A
linear function of risk and benefit models a compensa-
tory decision strategy (i.e. high levels of benefit can
compensate high levels of risk). Alternatively, a non-
compensatory threshold model puts a user-tailored up-

per bound on the maximum tolerable level of risk. Re-
cent work shows this to be a preferable solution due to
its predictably bounded behavior [20].

How should the adaptation be presented?

The outcome of the risk/benefit tradeoff can be used to
compare possible privacy-related behaviors and deter-
mine which behavior is most beneficial to the user.
Subsequently, the system has several opportunities to
act upon this knowledge. The most passive action it can
take is to provide the user suggestions, or to highlight
the most beneficial options [21,23]. A more proactive
approach would be to prioritize information requests, or
to set default settings in line with this knowledge

[23]. Care needs to be taken to give users a certain
amount of autonomy, without overburdening them.

Discussion and Conclusion

These questions give rise to a normative discussion
about the true purpose—the objective function—of
user-tailored privacy (see Figure 2). For example, using
behavioral or perceptual measurements of risk and
benefit makes the normative assumption that the sys-
tem should tailor to the user’s current privacy practices
or attitudes. While this avoids nudging users into using
features they do not want to use, one could question
whether some users’ attitudes and behaviors are simply
a product of their lack of awareness [49]. Alternatively,
one could make a normative case for a version of user-
tailored privacy that promotes features that the user is
currently not using, in an effort make them more aware
of these features. Such “self-actualizing” [26] privacy
recommendations would arguably need to be paired
with a presentation method that is less proactive, lest
we inadvertently nudge users into privacy behaviors
that are antithetical to their core values.
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