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We investigate the usability of humanlike agent-based interfaces for interactive advice-giving systems. In
an experiment with a travel advisory system, we manipulate the “humanlikeness” of the agent interface. We
demonstrate that users of the more humanlike agents try to exploit capabilities that were not signaled by
the system. This severely reduces the usability of systems that look human but lack humanlikehumanlike
capabilities (overestimation effect). We explain this effect by showing that users of humanlike agents form
anthropomorphic beliefs (a user’s “mental model”) about the system: They act humanlike towards the system
and try to exploit typical humanlike capabilities they believe the system possesses. Furthermore, we demon-
strate that the mental model users form of an agent-based system is inherently integrated (as opposed to
the compositional mental model they form of conventional interfaces): Cues provided by the system do not
instill user responses in a one-to-one matter but are instead integrated into a single mental model.

Categories and Subject Descriptors: H.1.2 [User/Machine Systems]: Human Factors; H.5.2 [User In-
terfaces]: Interaction Styles; H.5.2 [User Interfaces]: Natural Language; H.5.2 [User Interfaces]:
Evaluation/methodology

General Terms: Design, Human Factors, Measurement, Theory

Additional Key Words and Phrases: Agent-based interaction, anthropomorphism, usability, feedforward and
feedback, mental model

ACM Reference Format:
Bart P. Knijnenburg and Martijn C. Willemsen. 2016. Inferring capabilities of intelligent agents from their
external traits. ACM Trans. Interact. Intell. Syst. 6, 4, Article 28 (November 2016), 25 pages.
DOI: http://dx.doi.org/10.1145/2963106

1. INTRODUCTION

Advice-giving systems have been around for several decades in the form of intelligent
tutoring systems [Sleeman and Brown 1982], expert systems [Carroll and McKendree
1987], and recommender systems [Schafer et al. 1999]. Recent advances in machine
learning and artificial intelligence have given advice-giving systems the capability to
assist users with a wide variety of tasks. As the flagship commercial advice-giving
systems—Apple’s Siri, Microsoft’s Cortana, and Google Now—are tremendously com-
plex, their designers have come to realize that a standard Graphical User Interface
(GUI) is not sufficient to harness their power. Instead, these systems have a renewed
interest in agent-based interaction (an interaction paradigm that has been a topic of
human-computer interaction research for several decades [Behrend and Thompson
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2011; Benbasat et al. 2010; Qiu and Benbasat 2009; Yoo and Gretzel 2009; Nowak
and Rauh 2005; Al-Natour et al. 2006; Hess et al. 2006; Cowell and Stanney 2005;
Bickmore and Cassell 2001; Dehn and van Mulken 2000; Bradshaw 1997; Walker et al.
1994; Quintanar et al. 1987; Nickerson 1976]). In these systems, the user interacts
with a virtual entity using natural language.

Because agent-based interaction is richer, finer grained, and more natural than our
interaction with more tool-like interfaces, it should be more suitable for the increas-
ingly common situation where computers give advice and decision support [Negroponte
1997; Laurel 1990; Williges et al. 1987]. Moreover, research in highly controlled en-
vironments shows that people tend to find agent-based interaction more enjoyable
and more natural than interacting with a standard GUI [Kang et al. 2012; Yoo and
Gretzel 2009; Serenko 2008; Hess et al. 2006; Cowell and Stanney 2005]. At the same
time, though, agent-based interfaces developed in academia seem to be unable to live
up to these promises of enjoyable and natural interaction [Nowak 2004; Andersen and
Andersen 2002; Bickmore and Cassell 2001; Dehn and van Mulken 2000; Shneiderman
1997], and even the available commercial systems seem to fail us on many occasions.
Many of them remind us of the late MS Office agent “Clippy,” which caused annoyance
rather than fluent interaction [Trott 1998].

Why do these systems fail to provide the more flexible and enjoyable interaction
they promise? In this article, we argue that the key to this failure lies in the fact that
designers are attempting to give these agent-based advice-giving systems a humanlike
appearance: They have a human name, speak with a human voice, use full sentences,
employ a varied sentence structure and wording, and sometimes even have a human-
like avatar. In response to this, users will assume that the system has humanlike
capabilities, and they may overestimate the system, which breaks the interaction. For
example, try to ask Siri the following question: “Do I have a meeting on February 15?”
and then follow up that question with the following: “At what time does the sun rise on
that day?” You will find that Siri is unable to understand your reference to the previous
question and thus answers the latter question by giving you the time of sunrise for the
current day rather than February 15.1

In this article, we investigate the cognitive principles behind this overestimation
phenomenon. While existing research on humanlike agents focuses on the social psy-
chological effects of agent interfaces [Behrend and Thompson 2011; Benbasat et al.
2010; Qiu and Benbasat 2009; Nowak and Rauh 2005; Al-Natour et al. 2006], we in-
stead focus on how the usability of agent-based interaction differs from traditional
GUIs. In Section 2, we develop a theory that pinpoints the fundamental difference be-
tween humanlike agents and GUIs. This theory revolves around users’ understanding
of the way the system works (i.e., the “user’s model” [Norman 1986]). Specifically, the
usability of GUIs is determined by the formation of a compositional mental model, in
which cues of the system relate to user reactions in a one-to-one manner (cf. Brinkman
2003]). Our theory argues that agent-based interfaces, on the other hand, have an inte-
grated user’s model, in which users anthropomorphize the system and infer a broader
set of humanlike capabilities that are not necessarily related to the specific cues dis-
played by the system. We argue that this integrated mental model is the cause of
both the theoretical advantage of agent-based interfaces (i.e., by providing an instant
schema of humanlike intelligence that provides guidelines for how to interact with the
system), as well as the disappointing nature of current applications (i.e., because of the
almost-inevitable overestimation of the system’s humanlike capabilities).

In Section 3, we develop a series of hypotheses that allow us to (1) demonstrate that
the user’s mental model of agent-based interfaces is indeed more likely to be integrated

1Tested with iOS 9.2.
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rather than compositional, (2) test our expectations about the consequences of an
integrated mental model on the users’ humanlike and capability-exploiting responses,
and (3) evaluate the effect that these instilled responses have on the usability of the
interaction (i.e., a potential overestimation effect). In Section 4 we outline a Wizard-
of-Oz experiment to test these hypotheses, and in Section 5 we provide the results of
this experiment. In Section 6, we discuss these results, and in the conclusion (Section
7), we highlight the pitfalls of using an agent-based interaction paradigm and suggest
ways to improve the usability of agent-based interaction.

2. RELATED WORK AND THEORY DEVELOPMENT

In this section, we extend Norman’s theory of human-computer interaction [Norman
1986] to agent-based interfaces. Based on related work on agent-based interaction, we
posit a number of conjectures to argue that agent-based interfaces have an integrated
user’s model. These conjectures form the basis for the experiment we conducted in order
to empirically validate this theory of human-agent interaction.

2.1. The Compositionality of Traditional User Interfaces

First, let us consider how users interact with traditional GUIs using Norman’s theory of
human-computer interaction [Norman 1986], which remains one of the most prominent
theories in human-computer interaction today [Norman 2013]. To explain why some
systems are more usable than others, Norman argued that there are two gulfs between
the user and the system: the gulf of execution and the gulf of evaluation. The gulf of
execution manifests itself when the user has to discover how to manipulate the system
to accomplish a task. The gulf of evaluation emerges after the user has provided some
input and now has to interpret what the system has done and whether this is in line
with what he/she wanted to happen.

Norman states that a system is usable if users are able to easily overcome (bridge)
these two gulfs. Users do this by forming a “user’s model,” a mental representation of the
way the system works. A user’s model may contain some gaps and inconsistencies, and
it rarely matches the actual internal workings of the system, but an appropriate mental
model assists users to infer which interface actions fulfill their goal (bridging the gulf of
execution) and what the output of the system means (bridging the gulf of evaluation).
According to Norman, the formation of an adequate mental model is greatly facilitated
by providing appropriate feedback and feedforward. For instance, salient cues in the
system interface such as carefully worded labels on buttons (feedforward) let users
infer what the system can do, and understandable output (feedback) allows them to
see if the system actually did what they wanted.

An operationalization of Norman’s “user’s model” is the Layered Protocol Theory
(LPT) [Taylor 1988]. LPT decomposes user-system interaction into a set of layers that
each have a different level of abstraction. On each successive layer, users’ intentions are
broken down into smaller components. Brinkman [2003; Brinkman et al. 2007] argued
that this compositional character of the interaction is reflected in the users’ mental
model and that usability is therefore compositional. This implies that the user’s mental
model (and thus the usability) of a graphical user interface is simply the aggregate of
the mental models of its widgets (e.g., levers, buttons, text fields, scrollbars). Brinkman
showed that this assumption held for various interfaces.

The idea of a compositional mental model has been assumed by many other usability
researchers and designers. Evaluation techniques like Heuristic Evaluation [Nielsen
1994] explicitly evaluate the usability of the separate parts of the interface, so the ef-
fectiveness of such techniques partially depends on the legitimacy of the compositional
character of user interfaces.
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2.2. Agent-Based Mental Models

Norman’s usability theory is applicable to “real-life” interfaces (e.g., doors and phones)
as well as our current software interfaces [Norman 1988]. However, agent-based inter-
faces typically lack the common levers, buttons, text fields, and scrollbars. How do users
form a mental model of an agent-based interface? Cook and Salvendy [1989] argued
that users infer the model of an agent-based system from the way it “looks” and “talks”
and the apparent intelligence of its responses, just like they would do when interacting
with other human beings. In light of Norman’s theory, the agent’s cues in terms of ap-
pearance and language provide feedforward, and the actual system capabilities provide
feedback. This notion is in line with Laurel [1990], who stated that a system shows
signs of humanlike intelligence when it shows humanlike responsiveness (meaning
that it is able to respond flexibly to incomplete requests) and when it shows humanlike
accessibility (meaning that it looks like a human being and uses grammatically correct
sentences).

In terms of feedforward, we will distinguish between humanlike appearance and
capability cues. Human-like appearance cues are cues that make the system look hu-
man, such as full sentences, a varied sentence structure and wording, and a humanlike
avatar. Human-like capability cues are cues that signal that the system has capabilities
similar to humans. In this article, we focus on linguistic capabilities, specifically, the
capability to understand references to the context (time, place, previous sentences) of
the conversation [Levinson 1983; Halliday and Hasan 1976]. An agent that displays hu-
manlike capability cues makes extensive use of such implicit references, using words
“you” and “I” (references to persons), “there” and “here” (references to place), “now”
and “then” (references to time), and “that” (references to things mentioned in previous
sentences).

Previous studies have shown that users attribute common human intelligence to
systems that provide more humanlike appearance and capability cues. For example,
users of a system with a cartoon character that “talks” in full sentences and personifies
itself believe that it shows some form of common human intelligence as well, while
these users do not show a similar belief when using a system without such a cartoon
character that talks “computerese” [De Laere et al. 1998; Quintanar et al. 1987]. We
thus argue that:

CONJECTURE 1: An agent-based user’s model is one of “believed humanlike intelli-
gence”: The more humanlike the system looks (appearance cues) and the more capabil-
ities it displays (capability cues), the more intelligent users believe the system to be.

This conjecture is presented on the left side of Figure 1. Note that the instilled use
image may not hold foot in the long run: Actual capabilities might not necessarily
co-occur with capability cues; the system might exhibit specific linguistic capabilities
(e.g., using the word “here” to refer to the current location) without actually being able
to understand them in the user dialog (e.g., it may not be able to infer the current
location when the user uses the word “here”). In effect, cues of humanlike appearance
and capabilities can underplay or overplay the agent’s actual capabilities. Over time,
the actual capabilities of the system provide feedback about the accuracy of the use
image, but this process is believed to be much slower, because it requires users to find
the boundaries of the system’s capabilities by trial and error (see Figure 1, bottom).

2.3. Anthropomorphism

What psychological mechanisms could underlie the user’s model of believed intelligence
as postulated in Conjecture 1? Thompson [1980] found that users of a natural language-
based system showed a tendency to anthropomorphize the behavior of the system:
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Fig. 1. Feedforward (cues) and feedback (actual capabilities) constitute the user’s model (believed intelli-
gence), which leads users to give humanlike responses and exploit the capabilities they believe the system
has.

Users treated the system as if it were a human being. Other research confirms this
tendency to anthropomorphize systems that display humanlike cues: Researchers have
found that the use of personalization, conversational tone, affective responses, and
diversified wording leads users to perceive agents as being more “human” [Quintanar
et al. 1987; De Laere et al. 1998].

Not only agent-based systems are subject to anthropomorphism. Researchers have
shown that users of any computer system occasionally engage in negative anthropomor-
phism (e.g., shouting [Chin, et al. 2005]) and unconsciously adhere to social principles
that normally apply between humans [Reeves and Nass 1996]. Reeves and Nass [1996]
show that computer users may, for example, show a “politeness effect”: They evaluate a
computer more positively when asked by that same computer than when asked by an-
other computer. Why would human beings try to be polite towards computers or shout
at them? Bradshaw [1997] offers an explanation for this phenomenon: When a sys-
tem’s behavior is too complex to understand, users are inclined to take the “intentional
stance” [Dennett 1987] when reasoning about these systems: They attribute inten-
tional behavior to systems as a convenient shortcut towards explaining complicated
behavioral patterns, and this also leads them to adhere to human social principles.
Although the intentional stance holds for any type of system, agents seem to instill
stronger anthropomorphic reactions [Nowak 2004]. In sum:

CONJECTURE 2: In agent-based systems, the intentional stance is at the heart of the
construction of the user’s mental model. The user’s model is an anthropomorphic con-
struct, instilled by humanlike cues.

2.4. Consequences of the User’s Mental Model

As the user’s model is a mental construct, one cannot directly observe whether it
is anthropomorphic. However, observable reactions to the user’s model can provide
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evidence of the nature of the latent mental model. For example, if the user’s model is
anthropomorphic, users will interact with the agent in a way that is in accordance with
human-human interaction. Such “humanlike responses” (the top-right ellipse in Figure
1) are reactions that previous research has found to occur in human-human interaction
but not in human-computer interaction. In this article, we focus on linguistic indicators
of believed human intelligence, such as the use of long and grammatically correct
sentences. Indeed, existing research has found that the use of a humanlike avatar and
personalized feedback (humanlike cues that may lead to an anthropomorphic mental
model) leads users to be more verbose and grammatically correct to computer systems
in their responses [Brennan 1991; Rosé and Torrey 2005; Walker et al. 1994; Richards
and Underwood 1984]. Hence, we argue:

CONJECTURE 3: Since the user’s mental model of an agent is anthropomorphic, users
will act in a more humanlike way towards a system they believe to be more intelligent.

Moreover, if the system looks and behaves human, then users will believe it has
typical human capabilities and will try to exploit these capabilities (the bottom right
ellipse in Figure 1). As mentioned earlier, in this article we focus on the linguistic
capability to understand implicit references to the context of the conversation [Levinson
1983; Halliday and Hasan 1976]. References to the textual context (“anaphora”) or the
situational context (“deixis”) are often used in human conversation to speed up the
interaction. However, computers are notoriously bad at understanding such references
[Winograd 1972; Dey 2001; Moratz and Tenbrink 2006; Smith 2013; Scheutz et al.
2011]. In the case of agent-based interaction, users may believe that a humanlike
system, like a human being, can resolve such implicit references [cf. Reichel et al.
2014]. In this article, we therefore define capability-exploiting responses as the use of
words referring to the current or previously mentioned location, like “here” and “there”
(spatial anaphora/place deixis); the current or previously mentioned time, like “now”
or “then” (temporal anaphora/time deixis); or a previously mentioned object, like “that
trip” or “that ticket” (nominal anaphora/discourse deixis). In sum, we argue that:

CONJECTURE 4: Users will assume that systems they believe to be more intelligent
also have more advanced linguistic capabilities, and they will try to exploit these
capabilities.

2.5. An Integrated Mental Model?

If an agent-based system would be just like a traditional GUI, then its user’s model
would be compositional: There would be a one-to-one mapping from its cues to a related
functionality. Each cue would then instill its own mental model and induce a corre-
sponding response. In other words, users would “mirror” the agent’s behavior and try
to exploit a certain humanlike capability if and only if the system would provide a cue
of this capability; for example, they would use contextual references (“here” and “now”)
if and only if the system gave them an explicit cue that this is possible (by using contex-
tual references in its responses). Brennan [1991] found support for such a one-to-one
mapping. In her experiments with both human-human and natural language-based
human-computer interactions, she found that participants were likely to show syntac-
tic entrainment, a direct reflection of the conversation partner’s responses. According
to Brennan’s findings, one could evoke a certain behavior in the users’ response by
expressing the same behavior in the agent. Let us take, for example, a number of cues
that an agent-based system could display: cue A, a human-looking avatar; cue B, using
grammatically correct sentences; and cue C, referring to the current location as “here.”
Furthermore, let us consider the following responses that the user can give: response B,
using grammatically correct sentences; response C, referring to the current location as
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Fig. 2. The effects of system cues on user responses differ for compositional mental models and integrated
mental models.

“here; and response D, asking multiple questions at once. According to Brennan’s the-
ory of syntactic entrainment, cue B will instill response B and cue C will instill response
C, but cues would never be able to instill any responses that are not directly related
(e.g., cue B cannot instill response C). Consequently, cue A (which has no correspond-
ing response) does not instill any humanlike responses, and response D (which has no
corresponding cue) should not occur at all. The left panel of Figure 2 shows a graphical
representation of a compositional mental model.

However, the intentional stance [Dennett 1987] should allow users to create an
integrated mental model based on the behavior of the system as a whole. If the system
is sufficiently humanlike, then it will be attributed intentional behavior, and this attri-
bution is based on the “humanlikeness” of the agent as a whole, not on a specific part
of its behavior. This gives users a “shortcut” to the functionality of the system, because
they can predict what the system can and cannot do based on what they know their fel-
low humans can and cannot do. For example, users may infer that humanlike systems
are able to handle complex sentences with implicit references. In terms of Norman’s
usability theory, it is stated as follows: The fact that the “system” is “human” provides
them instantaneously and effortlessly with a detailed mental model of what it can do
and how to interact with it. In the words of Laurel [1990]: “[An agent-based interface]
makes optimal use of our ability to make accurate inferences about how a character
is likely to think, decide and act on the basis of its external traits. This marvelous
cognitive shorthand is what makes plays and movies work [. . .] With interface agents,
users can employ the same shorthand—with the same likelihood of success—to predict,
and therefore control the actions of their agents” (pp. 358–359).

If users integrate the system cues they receive into a mental model of believed
intelligence, then there would be a more complex relation between system cues and
user responses than the one-to-one mapping of a compositional mental model. As can
be seen in the middle panel of Figure 2, in such a case, cue B not only instills response B
but also can instill response C (e.g., if the system uses grammatically correct sentences,
then users are not only more likely to use grammatically correct sentences as well but
also more likely to refer to the current location as “here”). Furthermore, a cue that
does not have a directly related response (e.g., cue A) may still instill certain responses
(e.g., a human-looking avatar may instill grammatically correct sentences and implicit
references to place or time). Also, responses not directly connected to a related cue
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(e.g., response D) can still be evoked by other cues (e.g., the user might think that the
agent can handle multiple requests at the same time, even if it does not display any
feedforward cue that suggests that it has this capability). In this case, the relation
between system cues and user responses is mediated by the formation of a single,
integrated mental model (Figure 2, right panel). In effect, we argue that:

CONJECTURE 5: All cues about the intelligence of the system will be integrated into a
single mental model and instill a series of possibly unrelated responses.

Taken together, Conjectures 1–5 present the cognitive principles of human-agent
interaction: If a system employs humanlike appearance and capability cues, then users
will believe it to be intelligent (C1). This anthropomorphic mental model (C2) will cause
users to employ humanlike (C3) and capability-exploiting (C4) responses towards the
system. Most importantly the user’s mental model is integrated (C5), which means
that any kind of cue can instill any kind of response. This integrated mental model
has profound effects on the usability of agent-based systems; the following subsection
discusses those effects.

2.6. The Effects of an Integrated Mental Model on Usability

An integrated mental model of agent-based interfaces can have both positive and
negative effects on their usability (for an overview of selected studies in this field,
see Dehn et al. [2000] and, more recently, Qiu and Benbasat [2009]). On the positive
side, the integrated mental model makes agent-based interfaces especially suitable for
performing complex tasks such as giving advice to support decisions. Typical GUIs
have a compositional mental model with a one-to-one mapping from the layout of
the interface to the functions of the system. The more complex the system gets, the
more interface elements it requires, and the more difficult it becomes for users to
retrieve the adequate mental model for each widget. Therefore, it might be impossible
to create a really usable GUI for a complex system. If agent-based interfaces are
subject to an integrated use image, then they would instantly provide users with a
heuristic to determine what they can and cannot do and with an easy way to access
this functionality. So instead of having to form a mini-mental model for every widget in
the interface, the users will identify the humanness of the interface, instantly infer its
integrated mental model, and act accordingly. In effect, the more humanlike the system,
the more usable it will be. In line with this, the experiments of Dharna et al. [2001] and
Quintanar et al. [1987] found that more humanlike interaction increased usability.

On the negative side, though, an integrated mental model poses severe problems
when it is incorrect. This occurs when the system cannot perform a certain function—
or a number of functions—that the user expects the system to be able to perform based
on the formed mental model. If the system looks more capable than it actually is, then
users might overestimate the system’s capabilities, which would then result in confusion
and reduced usability. This would be especially true for users’ initial interactions with
the system, when they have not yet learned the actual capabilities of the system from
its feedback. In other words, among the dimensions of usability, the learnability will
arguably suffer the most. Several studies have suggested that such overestimation
might occur [cf. Richards et al. 1984; Brennan 1991; Erickson 1997; Forlizzi et al. 2007;
Walker et al. 1994; Shneiderman 1981], and some have demonstrated it in qualitative
accounts [cf. Serenko 2006], but it has to our best knowledge never been tested in a
controlled experiment.

By definition, the usability of interaction with a system is good when users try to
use the capabilities that the system provides, and do not try to use any capabilities the
system does not provide. Since users base their interaction decisions on their mental
model of the system, this means that this mental model has to match the actual system
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capabilities [Norman 1986]. If the user’s model of an agent were compositional, then
it would be fairly easy to “manage” this mental model so that it matches the actual
system capabilities: the system would simply have to provide a capability cue for each
actual capability. However, an integrated mental model implies that it is much harder
to control the user’s model, as it suggests that there is more than just a one-to-one
relation between cues and responses. In effect, even humanlike appearance cues may
instill capability-exploiting responses: Merely “looking human” may be enough to make
users believe that the system has certain typically humanlike capabilities (even if they
are not actually present).

In sum, the presumed integrated mental model is responsible for the greatest advan-
tage but at the same time also the most significant drawback of agent-based interaction:
Due to our natural tendency to anthropomorphize, it is very easy to instantly create
a complex, integrated mental model from which users can effortlessly infer a myriad
of complex functions to perform with the system, along with possible ways to exploit
them. However, since these functions are not directly coupled to a specific underlying
cue, an overestimation effect can easily occur in which one or more of these functions
are actually not available in the system, and it will be rather difficult to tweak the
user’s mental model such that it perfectly matches the actual system capabilities.

3. HYPOTHESIS DEVELOPMENT

The five conjectures outlined in the previous section present a general theory of human-
agent interaction and usability. In this section, we will develop hypotheses to empiri-
cally validate this theory. Specifically, we will test whether humanlike agents indeed
instill humanlike (C3) and capability-exploiting (C4) responses, whether the user’s
mental model of agent-based interfaces is more likely to be integrated rather than
compositional (C5), and what kind of an effect this has on the usability of the interac-
tion (i.e., a potential overestimation effect if the system cannot live up to its promises).
Together, these hypotheses provide support for our conjectures that the user’s men-
tal model of an agent-based system is an anthropomorphic construct (C2) of “believed
human intelligence” (C1).

To test these hypotheses in our experiment, we built an advice-giving system and
independently varied its feedforward cues and its actual capabilities. The feedforward
provided by the system is varied in three different “cues” conditions: “computer-like
cues” (the agent looks like a computer and talks “computerese”), “humanlike appear-
ance cues” condition (the agent looks and talks like a human being), and “humanlike
appearance and capability cues” (the agent uses deictic and anaphoric references (e.g.,
the word “here” to refer to a place); this signals its capability to understand such refer-
ences). Furthermore, the actual capabilities of the system are varied in two conditions:
The system with “low capabilities” can only process simple, complete requests, while
the “high capabilities” system can process complex requests with implicit (deictic or
anaphoric) references, just like a human being would be able to handle. We then asked
users to perform a number of tasks with the system and measured their humanlike
and capability-exploiting responses, as well as the usability of the interaction.

In terms of usability, we argue that a system with high capabilities should generally
be more efficient (i.e., time and number of requests per task) and satisfying to use:

H1. Efficiency and user satisfaction in the “high capabilities” condition will be higher
than in the “low capabilities” condition.

One might argue that it is obvious that a system with more capabilities would
be easier to use. However, if the user’s mental model is not integrated, then more
capabilities mean that the user needs to form more (separate) mini-mental models of
the system, which leads to more cognitive overhead. A formal test of this hypothesis is
therefore still a useful endeavor.
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Within the “low capabilities” conditions, there is an opportunity for overestimation to
occur, that is, when the system appears humanlike and displays humanlike capabilities
but is not able to understand complex requests like a human being would (i.e., the
system with humanlike cues but low capabilities). In this situation, users may take
much longer to learn the actual capabilities of the system, or they may even give up if
entirely if they feel unable to learn the actual system capabilities. In other words, in the
“low capabilities” conditions, the “humanlike” systems may have a lower learnability
(i.e., in terms of the reduced time per task from the first to the last task) and a lower
effectiveness (i.e., in terms of the proportion of participants finishing all tasks) than
the “computer-like” systems:

H2. Within the “low capabilities” conditions, the occurrence of “humanlike appearance
cues” and “humanlike appearance and capability cues” will lead to lower learn-
ability and effectiveness than “computer-like cues.”

To test the existence of an anthropomorphic mental model, we inspect users’ hu-
manlike and capability-exploiting responses in the “high capabilities” conditions in
hypotheses 3 and 4. We can only use the “high capabilities” conditions for these tests,
because in the “low capabilities” conditions the system provides feedback in the form
of errors when the user tries to exploit nonexistent capabilities. Consequently, if the
system has low capabilities, users will eventually learn to restrict their vocabularies
in order to “make the system work.” So to accurately measure how these different
cues conditions instill different types of user behavior, we restrict these hypotheses to
the conditions where users’ behavior is not influenced by the actual capabilities of the
system (i.e., the “high capabilities” conditions).

In terms of humanlike responses, we predict that users are expected to give more
of such responses when more humanlike cues are provided. This suggests conduct-
ing planned contrast comparisons between the two “humanlike” conditions and the
“computer-like” condition:

H3. Within the “high capabilities” conditions, users in the “humanlike appearance
cues” and the “humanlike appearance and capability cues” conditions exhibit more
humanlike responses than in the “computer-like cues” condition.

Finally, we can test whether this anthropomorphic mental model is compositional or
integrated. If and only if the user’s mental model is compositional, then there would be a
one-to-one mapping between cues and responses. Specifically, a humanlike appearance
cue given by the agent (e.g., a humanlike avatar) cannot evoke capability-exploiting
responses from the user (e.g., using context of time and place). In that case, users
will try to exploit humanlike capabilities in the “humanlike appearance and capability
cues” condition only, and users in the “humanlike appearance cues” condition use the
same (low) amount of capability-exploiting responses as users in the “computer-like
cues” condition. In other words, this suggests a planned contrast comparison between
the “humanlike appearance and capability cues” condition on the one hand and the
“humanlike appearance cues” and “computer-like cues” conditions on the other hand:

H4a. If and only if the use image is compositional, then—within the “high capabilities”
conditions—users exhibit more capability-exploiting responses in the “humanlike
appearance and capabilities cues” condition than in the “humanlike appearance
cues” condition or the “computer-like cues” condition.

On the other hand, if and only if the user’s mental model is integrated, then human-
like appearance cues can evoke capability-exploiting responses. In that case, users will
try to exploit humanlike capabilities in both the “humanlike appearance cues” and the
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Table I. A Description of the System Capabilities Manipulation

Low capabilities
The low capabilities system lacks several typically
human capabilities, specifically:
The system cannot infer information that is implicitly
stated, for example, if no departure time is given, it
will not process the request.
The system does not understand spatial or temporal
references, for example, it will not understand

The system treats every request as a new entity, for
example, a request like: hat is the price for that

The system can infer implicitly stated information: for
example, if no departure station is given, it assumes the
user’s current location (the
The system can determine the meaning of deictic
references, for example, it will understand ere and

ow

rigo of deixis).

hen

ere or ow

The high capabilities system has several typically human
capabilities, specifically:

High capabilities

will not be processed.
The system can only handle one request at a time.
The system cannot handle convoluted sentences, that
is, it will only interpret the first 10 words of a request.

The system can handle requests of any length.
The system can handle multiple connected requests.

The system can infer anaphoric references to times, places
or trips mentioned in previous requests, for example, it will
understandtrip? hat tripand

“humanlike appearance and capability cues” conditions. In other words, if capability-
exploiting responses occur even in the “humanlike appearance cues” condition, then
this would rule out the strictly one-to-one mapping between cues and responses that
the compositional mental model would predict and thereby provide evidence for an
integrated mental model. This suggests conducting a different planned contrast com-
parison, namely between the two “humanlike” conditions and the “computer-like” con-
dition:

H4b. If and only if the user’s mental model is integrated, then—within the “high ca-
pabilities” conditions—users exhibit more capability-exploiting responses in the
“humanlike appearance cues” condition and the “humanlike appearance and ca-
pabilities cues” condition than in the “computer-like cues” condition.

4. EXPERIMENTAL SETUP

For our experiment, we created an agent-based system for requesting travel informa-
tion for the Netherlands Railways (NS). The specific capabilities and cues of the system
in the 2×3 between-subjects design are described in Table I and Table II, respectively.
The experiment was conducted online with university students from all over the
Netherlands. Ninety-two participants (35 male; age M = 21.8, SD = 3.55) took part
in the experiment, which was conducted entirely over the Internet, with participants
logging in from their home computers. Since only the high-capabilities condition allows
us to test H3 and H4, 59 participants were assigned to the “high capabilities” condition
and only 33 to the “low capabilities” condition. Table III shows the full factorial design
and the number of participants in each of the six experimental conditions.

A Wizard-of-Oz technique was used to provide the functionality of the system: users
were led to believe that they were interacting with a real system, but actually the
experimenter read their inputs and provided the system responses. Participants were
asked to sign up for a specific time slot to interact with the system.2 This prevented
the experimenter from becoming overwhelmed or having to stand by 24/7 to wait for
participants. All users performed the following predefined tasks using the system3:

2Participants were recruited from a database that was also used for lab experiments. Participants were thus
familiar with the “sign up for a time slot” experience; it did not seem to raise suspicion.
3We included four tasks so users would have multiple interactions with the system. Task order was not ran-
domized, because the task did not represent any experimental manipulation. Moreover, all tasks were about
equally complex and provided an equal opportunity to give humanlike and capability-exploiting responses.
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Table II. A Description of the System Cues Manipulation

Computer-like cues

These systems are used as a baseline.
They present a logo and a textbox
that displays system responses. They
display roken
strict sentence structure, which
provides users with the feel of
computer-style dialogue.

These systems introduce some
humanlike, representational cues.
They present a humanlike character
that alks
The character uses full sentences,
and a more varied sentence structure
and wording. These systems do not
use capability-implying cues; their
appearance and interaction style are
just more humanlike.

These systems have the same cues as
the 

certain humanlike capabilities. In
their responses, they make extensive
use of implicit references, in the
form of personal deixis (you, I),
temporal and spatial reference (there,
then) and deixis (now, here), and
nominal references (that trip). 

Human-like appearance cues Human-like appearance and
capability cues

sentences and a through a speech bubble.

umanlike appearance
cues systems, but they also signal

Table III. Number of Participants Per Condition

Computer-like cues
Humanlike

appearance cues
Humanlike appearance

and capability cues
Low capabilities 10 11 12
High capabilities 20 19 20

TASK 1: It is Monday morning 11am and you are at Eindhoven station. Your first trip
is to Tilburg. Try to find out from which platform the train leaves, and whether you
have to switch trains somewhere.

TASK 2: Monday, 11:30am: You arrive in Tilburg, and decide to walk around town for
a bit. Before you leave the station, you first look up at what time your train to Leiden
leaves. You want to arrive in Leiden at 5pm. What time do you have to leave? What
does this trip cost?

TASK 3: You are experiencing some delay due to the evening rush hour, and you arrive
in Leiden at 5:30pm. You decide to stay there for the night. Tomorrow you want to be
in Roosendaal at 9:45am. What time do you have to leave? What does this trip cost?

TASK 4: Tuesday 9pm. You are walking back to the Roosendaal station. Find out when
the next train to Eindhoven leaves, and what the trip will cost.

4.1. Measures

Our hypotheses require us to measure the humanlike and capability-exploiting
responses that our participants provide during the interaction, as well as the overall
usability of the interaction. Humanlike responses are behaviors that typically occur in
interaction between two humans, and that do not occur when a human is interacting
with a computer. Brennan [1991] found that participants used more first-person
references (“I” and “me”) when talking to humans compared to when they were talking
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Table IV. Differences in Usability Metrics for Low versus High Capabilities System

Low capabilities High capabilities Significance∗ Effect size∗

# of requests per task 3.05 1.66 p < .001 r = .78
Time per task (seconds) 181 106 p < .001 r = .71
Satisfaction (min. 9, max. 45) 24.48 31.47 p < .001 r = .53

∗ Tests are based on linear mixed-effects models, except for satisfaction, which is based on a t-test.

to computers. Researchers have found that participants also used significantly longer
sentences when talking to other humans compared to when they were talking to
computers [Rosé et al. 2005; Shechtman and Horowitz 2003; Richards et al. 1984].
Thompson [1980] found that participants used more grammatically correct sentences
when talking to humans compared to when they were talking to computers. We
therefore use the number of personal references, the number of words per request, and
the grammatical correctness of the requests (correct sentences versus command-style
language) as humanlike responses.

We define capability-exploiting responses as behaviors that exploit the typical capa-
bilities of a human conversation partner; specifically, the linguistic capability to under-
stand implicit references, which is commonly not available in computers. This capa-
bility includes understanding “anaphora” (a reference to an earlier question/sentence),
“time deixis” (a reference to the current date or time), “space deixis” (a reference to the
current place), and “multiple connected questions” (asking for multiple things within
one request). Other humans can exploit these capabilities by using “anaphora” (refer-
ring to earlier questions), “time deixis” (using words like “now” or “tomorrow” or not
indicating a time, thereby implicitly meaning “now”), “space deixis” (using words like
“here” or not indicating a place, thereby implicitly meaning “here”), and asking multi-
ple questions at once (asking “how do I get to Amsterdam, and what does it cost?”). We
used the presence of such user behavior to measure capability-exploiting responses.

Usability is typically conceived as a multi-dimensional concept, including effective-
ness (whether users are able to perform the task with the system or not), efficiency (the
amount of time or number of actions users needed to accomplish a task), and satisfac-
tion (a self-reported reflection of the users’ feelings with regard to using the system)
(International Standards Organization [ISO] 9241-11). As participants performed mul-
tiple similar tasks with the system, we added learnability (the time it takes to learn
to do a task efficiently or the amount of efficiency that can be gained over time) to this
list. We measured usability as follows:

—Discontinuation of the experiment (proxy of ineffectiveness)
—Number of requests a user needs to make and time per task (proxy of efficiency)
—Satisfaction, as measured by the “overall reactions to the software” Section of the

Questionnaire for User Interface Satisfaction [Chin et al. 1988]
—Difference in time per task between the first and the last task (proxy of learnability)

5. RESULTS

5.1. Low versus High Capabilities

We first confirm that the system with high capabilities is actually more usable (in
terms of efficiency and user satisfaction) than the system with low capabilities (H1).
Table IV shows that users needed significantly fewer requests and less time per task in
the high compared to the low-capabilities conditions and were also significantly more
satisfied, indicating that the highly capable system was indeed more usable (in terms
of efficiency and satisfaction) than the less capable system.
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Table V. Decrease in Time (Seconds) Needed to Perform the Task between Task 4 and Task 1

Computer-like cues
Humanlike

appearance cues
Humanlike appearance

and capability cues
Low capabilities 108.56 40.12 25.89
High capabilities −6.50 20.42 13.30

5.2. Overestimation

H2 suggests that in the “low capabilities, humanlike appearance cues” and the “low
capabilities, humanlike appearance and capability cues” conditions users overestimate
the capabilities of the system, resulting in a lower learnability and effectiveness than
the “low capabilities, computer-like cues” condition.

Strong evidence for overestimation was found in terms of system effectiveness: Five of
the 23 participants interacting with a system with low capabilities but humanlike cues
(and none for computer-like cues) prematurely quit the experiment—something that, in
our experience with this participant database, rarely happens. Two participants in the
“low capabilities, humanlike appearance cues” condition and three participants in the
“low capabilities, humanlike appearance and capability cues” condition were not able
to adapt their questions to the limited capabilities of the system. Probably frustrated
with the numerous error messages they encountered, they either closed their browsers
or skipped all remaining tasks to end the experiment. Typically, these users completed
none or just a single task before giving up.

Additional evidence for the overestimation effect was found in terms of learnability.
Table V shows that within the low-capabilities condition, users of the computer-like
interface showed a higher time decrease (learned faster) than users of the humanlike
systems.4 A Factorial ANOVA on the decrease in time used to perform the first task
and the last task5 was performed with capabilities and cues as independent variables.
First, a main effect of capabilities showed that across cue conditions, users in the low
capabilities conditions exhibited a stronger decrease in time used per task than users
in the high capabilities conditions (Mlow = 58.2 seconds versus Mhigh = 9.3s, F(1,83) =
8.56, p < .005, partial η2 = 0.098). This result indicates that there was less need for
learning in the high capabilities system. More importantly, the interaction between
capabilities and cues was significant (F(2,82) = 3.95, p < .05, partial η2 = 0.091), which
indicates that the strongest decrease in time (our measure for learnability) occurred in
the “low capabilities, computer-like cues” condition. Indeed, the time decrease in this
condition is marginally higher than in the “low capabilities, humanlike appearance
cues” and the “low capabilities humanlike appearance and capability cues” conditions
(contrast: F(1,24) = 2.66, p = 0.11, partial η2 = 0.10), and there is no significant
difference between the two “humanlike” conditions (contrast: F(1,15) = 0.073, p =
0.79). In the “high capabilities” conditions, the time decrease in the “computer-like
cues” condition is actually lower than in the other two conditions (contrast: F(1,57) =
4.283, p = 0.043, partial η2 = 0.070), and there is again no significant difference between
the two “humanlike” conditions (contrast: F(1,37) = 0.325, p = 0.57).

Note that, according to the findings above, overestimation occurred not only in the
“humanlike appearance and capabilities cues” condition but also in the “humanlike
appearance cues” condition. This suggests that participants tried to exploit inexistent
capabilities even if the system gave no explicit (one-to-one) cues of these capabilities.

4Participants who quit the experiment are excluded from this analysis.
5Since all tasks were about equally difficult, this is an unbiased indicator of learnability.
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This already provides evidence for the existence of an integrated mental model, which
we will test in more detail in the next sections.

5.3. Existence of an Anthropomorphic Mental Model

To demonstrate the existence of an anthropomorphic mental model, we compare
measurements of humanlike and capability-exploiting responses in participants’
interaction between the different cue conditions. We can perform these tests only on
the high capabilities systems, because the direct feedback (system errors) in the low
capabilities systems mitigates these behavioral differences.

H3 suggests that the occurrence of humanlike responses in the “high capabilities”
conditions is higher for systems with “humanlike appearance cues” and “humanlike
appearance and capability cues” than for systems with “computer-like cues.” As de-
pendent measures of humanlike responses, we tested the number of first-person ref-
erences, total number of words per request, and the grammatical correctness of the
requests. See Figure 3 for overall and task-specific numbers of humanlike responses
for these three dependent measures. Each of these measures differed in their under-
lying scale (nominal, frequency, and continuous). To analyze the data, we therefore
used mixed (Poisson, linear, and nominal) regressions with random intercepts. As in-
dependent factors, we used cue-level and task number. Figure 3 reveals substantial
effects of task on most measures, so we used a linear and quadratic task term in the
regression to account for these variations. Below we concentrate our discussion on
the effects of cue-level, though. Further details of the regressions can be found in the
appendix.

Figure 3(a) shows that the number of first-person references used is significantly
higher in the “humanlike appearance cues” and “humanlike appearance and capability
cues” conditions than in the “computer-like cues” condition (contrast “CuesHum” in
the appendix; β = 1.86, p = 0.021). Figure 3(b) shows the same for the number of
words per chat request (β = 4.22, p = 0.005), and Figure 3(c) shows the same for
grammatical correctness (β = 10.88, p < 0.001). Concluding, we found evidence for the
existence of an anthropomorphic mental model (H3), as several humanlike responses
were significantly higher when the system had humanlike cues.6

H3 also suggests that the occurrence of capability-exploiting responses in the “high
capabilities” conditions increases with cue level. A sum measure7 of the five capability-
exploiting responses (see Section 4.1) was taken for each task. Figure 4 shows that
the number of capability-exploiting responses is dependent on the cue level and
varies by task. Notice that even in the “computer-like cues” condition, the number of
capability-exploiting responses observed is unexpectedly high. This is the case because
our interface allowed users to type anything into the text field of our system, which
for some of the more adventurous participants seemed to be a prompt in itself to try to
exploit as many of the system capabilities as possible. More importantly, however, the
number of capability-exploiting responses in the humanlike conditions is significantly
higher. A linear mixed regression with cue level and task number as independent fac-
tors shows that the number of capability-exploiting responses is significantly higher

6Note that the difference between “humanlike appearance cues” and “humanlike appearance and capability
cues” (contrast “CuesCap” in the appendix”) is not significant for any of these humanlike responses.
7When a number of items are all indicators of the same behavior, and measured on the same measurement
scale, taking a sum measure to create an “index variable” increases the robustness of the measurement,
as well as the power of subsequent statistical analyses. In our case, the sparsity of capability-exploiting
behaviors is another reason to create an index variable: This variable is more normally distributed than
its individual indicators. Running multilevel logistic regressions with the individual indicators provides the
following results: anaphora: no effect; date deixis: no effect, time deixis: p = 0.14, place deixis: p = 0.034,
asking multiple questions: p = 0.009.
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Fig. 3. People use more first-person references (a), longer sentences (b), and better grammatical correctness
(c) towards systems with more humanlike cues. The left-side graphs show the humanlike response measures
for each cue level. The right-side graphs show how these measures vary per task for each cue level; their
vertical axis is measured in the same units as the left-side graphs.
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Fig. 4. Capability-exploiting responses (i.e., anaphora, date deixis, time deixis, place deixis, and asking
multiple questions) are higher for systems with more humanlike cues. The left-side graph shows the number
of capability-exploiting responses for each cue level. The right-side graph shows how this measure varies
per task for each cue level.

in the “humanlike appearance cues” and “humanlike appearance and capability cues”
conditions than in the “computer-like cues” condition (contrast “CuesHum” in the ap-
pendix; β = 0.49, p = 0.019). These results provide further evidence for the existence
of an anthropomorphic mental model (H3), as the total number of capability-exploiting
responses was significantly higher when the system had humanlike cues.

5.4. Integrated Mental Model

If users have an integrated mental model, then they should show capability-exploiting
responses even when the system does not give humanlike capability cues, that is, when
it gives humanlike appearance cues only. In such a case, a compositional mental model
is ruled out, since it predicts that only capability cues can induce capability-exploiting
responses. In other words, the compositional mental model hypothesis (H4a) predicts
that the capability-exploiting responses in the “humanlike appearance cues” condition
are as low as in the “computer-like cues” condition and only higher in the “humanlike
appearance and capability cues” condition (i.e., {low, low, high}); while the integrated
mental model hypothesis (H4b) predicts that the capability-exploiting responses in the
“humanlike appearance cues” condition are significantly higher than in the “computer-
like cues” condition, and equally high as in the “humanlike appearance and capability
cues” condition (i.e., {low, high, high}).

As can be seen in Figure 4, the capability-exploiting responses are indeed higher in
the “humanlike appearance cues” systems than in the “computer-like cues” condition
and almost at the same level as in the “humanlike appearance and capability cues”
condition. In line with this, the planned contrast between “computer-like cues” and the
other two conditions provided significant results (contrast “CuesHum” in the appendix;
β = 1.86, p = 0.021), supporting H4b. Moreover, the contrast between “humanlike
appearance cues” and “humanlike appearance and capability cues” was not significant
(contrast “CuesCap” in the appendix; p > 0.05). H4a would suggest that a gap exist be-
tween the first two cue conditions and the last one: “computer-like cues” + “humanlike
appearance cues” versus “humanlike appearance and capability cues.” This contrast
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was not significant (p > 0.05). Thus, in line with H4b, there is a significant increase in
capability-exploiting responses between the system with “computer-like cues” and the
other two conditions, meaning that even with humanlike appearance cues alone, peo-
ple show more capability-exploiting responses than for computer-like cues. Apparently,
these cues can elicit cue-unrelated responses. This suggests that the cues do not elicit
a specific response but that they are integrated into a complex mental model that can
trigger any kind of response that is in correspondence with this mental model, even
outside the range of the provided cues. In other words, this provides evidence that the
user’s model is integrated rather than compositional.

6. DISCUSSION

We conducted our experiment with the goal of empirically supporting our theory of
human-agent interaction, which argues that the user’s mental model of an agent-based
system is an anthropomorphic construct (C2) of “believed human intelligence” (C1).
This theory argues that a system that employs humanlike appearance and capability
cues can instill humanlike (C3) and capability-exploiting (C4) responses from the user.
Most importantly, it argues that agent-based mental models are integrated (C5), which
means that any kind of cue can instill any kind of response.

Results from the experiment indeed show that users of humanlike systems show
more humanlike and capability-exploiting responses than users of computer-like sys-
tems (H3). This results in more first-person references, longer sentences,8 and more
grammatically correct sentences. Users of humanlike systems also (try to) make more
use of humanlike capabilities, like implicit references to context and earlier parts of
the conversation, and asking multiple questions at the same time.

We argued that some systems may not be able to handle such humanlike and
capability-exploiting responses. In these cases, the actual system capabilities would
be overestimated by the user, which would result in a reduction in system usability.
Results from the experiment show that while low capability systems are in general less
usable (H1), overestimation occurs when such low capability systems employ human-
like cues, which causes reductions in effectiveness and learnability (H2). Effectiveness
is dramatically reduced when cues indicate humanlike intelligence while the system
has low capabilities; some participants even gave up entirely when they overestimated
the capabilities of the system. Learnability is also better when cues match system ca-
pabilities. If a system has limited capabilities, then only with computer-like cues will
users eventually learn to use the system in a significantly faster way.

Finally, we hypothesized that the constructed mental model would not be compo-
sitional like in “normal” human-computer interaction [Brinkman 2003], but that it
would instead be integrated. We set out to provide empirical evidence for this “inte-
gratedness” by showing how certain cues could elicit unrelated responses (H4b) rather
than just related responses (H4a). Results from the experiment show that “human-
like appearance cues” (i.e., cues not directly related to capabilities) alone increase the
number of capability-exploiting responses. This suggests that there is not a one-to-one
mapping from cues to responses, but that these responses are instead mediated by an
underlying integrated mental model.

8One might conjecture that using longer sentences may reduce the efficiency of agent-based interaction.
However, participants in the humanlike conditions were not slower than in the computer-like condition. In
fact, they were marginally faster (β = −15.26, p = 0.054).

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 4, Article 28, Publication date: November 2016.



Inferring Capabilities of Intelligent Agents from Their External Traits 28:19

Our results can be explained by the realization that humanlike agents are a
metaphor. Metaphors are an easy way to instill a complex, integrated mental
model, because capabilities are not directly related to cues but can be inferred. This
anthropomorphic mental model may, however, cause the user to overestimate the
system’s capabilities, which reduces the usability of the system. The results of our
experiment confirm these statements. In a system using an agent-based interface,
the usability is higher when the system is more capable. In our system with low
capabilities, however, the usability decreases even further when the agent looks more
humanlike. We argue that this effect may be caused by an anthropomorphic mental
model: Arguably, the user thinks such a humanlike agent possesses some form of
humanlike intelligence and thereby overestimates the actual system capabilities.
This presumed mental model instilled by the agent leads the users to respond in a
humanlike fashion and to exploit the humanlike capabilities that the user presumably
believes the system to have. For usable agent-based interaction, each cue must
therefore be delicately tuned to instill the right beliefs; otherwise, it will inadvertently
lead users to overestimate the capabilities of the system.

Moreover, the provided cues are integrated into a single mental model that results
in a set of responses that do not necessarily need to be directly related to the provided
cues. Specifically, capability-exploiting responses can be induced not only by capability
cues but even by appearance cues alone. This last finding is most important, since it
explains that it is very hard to fix overestimation problems in agents exactly because
the capabilities are inferred instead of directly related to cues. The integrated mental
model makes finding the right set of cues a matter of trial and error, and it might
well be the case that there is no possible configuration of cues that will not lead to
overestimation.

7. CONCLUSION

In this article we have demonstrated that users of humanlike systems anthropomor-
phize the system and thereby instantly infer a mental model of humanlike intelligence.
Our results suggest that agent-based interaction provides system designers with a pow-
erful metaphor, but that this metaphor is too powerful for most of our current systems.
These systems cannot live up to the expectations elicited by the agent-based metaphor
and thereby suffer from bad usability.

A limitation of our study is that the agent we built somewhat differs from the agents
that are in commercial use today. Unlike our agent, most of today’s agents use spo-
ken rather than written language to interact with the user. Moreover, unlike today’s
agents, our agent has a humanlike avatar. Both of these aspects arguably increase
the humanlikeness of the agent, and we argue that it is a good thing that today’s
agents do not employ a humanlike avatar, lest they suffer even more from the effects
of overestimation.

Another limitation is that we tested our agent on a culturally uniform sample of
university students. While we took care to avoid having engineering students only,
our sample is arguably younger and more tech-savvy than the general population.
That said, we argue that in the general population the overestimation effect might
be stronger: a less tech-savvy audience will be less likely to understand the agent
and therefore more likely to take the intentional stance [Bradshaw 1997] and make
(unwarranted) inferences about the humanlike capabilities of the system. Future work
could further investigate potential cultural and demographic differences in the effect
of integrated mental models on human-agent interaction.

Our findings have specific implications for designers of advice-giving systems. As
advice-giving systems become more powerful, designers may be tempted to employ a
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humanlike agent-based system as an interaction metaphor. This is especially true for
advice-giving systems that are inherently conversational (cf. [Andersen and Andersen
2002; Holzwarth et al. 2006; McBreen and Jack 2001; Pazzani and Billsus 2002; Semer-
aro et al. 2008; Spiekermann and Paraschiv 2002]). Our results suggest, though, that
although agent-based interaction may seem intuitive for advice-giving systems, de-
signers have to be very careful when introducing a humanlike agent into their systems.
While an agent-based system can instantly create a complex mental model (voiding the
need for numerous buttons and labels), it is really hard to control this mental model
[Keeling et al. 2004]. Because the user’s mental model is integrated, it is hard to switch a
tiny part of it “on” or “off.” Therefore, to prevent usability issues, the system should pro-
vide every bit of functionality a user could possibly induce from the agent’s appearance.
As this is often impossible due to technological constraints, overestimation is likely
to occur, and usability may be significantly reduced. It is likely that the other benefits
of using agents (attractiveness, fun, social facilitation) do not outweigh these negative
effects on usability. Users will arguably more satisfied with a simple but elegant GUI-
based interaction method (e.g., “example critiquing” [Chen and Pu 2012]). For systems
that already use an agent-based paradigm, it would be advisable to continuously re-
mind users of their limited capabilities. In this sense, designers should follow existing
systems like Siri, Cortana, and Google Now, and refrain from giving the agent an osten-
sive human face. Moreover, a somewhat “robotic” voice could also dampen users’ high
expectations.

Moreover, system designers should realize that their conventional theories and meth-
ods for usability testing may not work on agent-based systems, because they do not
adhere to the conventional (compositional) “user’s model” as postulated by Norman
[1986]. For instance, modular usability tests of agent-based interfaces cannot be inte-
grated, since it is impossible to present part of the functionality without affecting the
other parts. Methods like Heuristic Evaluation [Nielsen 1994] that inspect each inter-
face widget and reason about its usability are less suitable for agent-based interfaces,
since it is not the widgets that determine the user’s mental model.

Given that agent-based mental models are often misaligned with reality, what could
the designers of such systems do to better manage users’ expectations? As human-
agent interactions are similar to human-human interactions, communication research
can arguably also be applied to agent-based interfaces. For example, established strate-
gies for self-presentation (see Kenrick et al. [2007], chapter 4 for a review) may ap-
ply to agents as well [Bailenson and Yee 2005]. Research for instance suggests that
when you want to help someone, you should focus on appearing likable rather than
competent [Casciaro and Lobo 2005]. One way to do this is to make the agent simi-
lar to the user in terms of gender, ethnicity, or personality [Behrend and Thompson
2011; Benbasat et al. 2010; Qiu and Benbasat 2010; Nowak and Rauh 2005; Al-Natour
et al. 2006].

Recent advances in speech processing, as demonstrated by Siri, Cortana, and Google
Now [Sateli et al. 2012; Lieberman et al. 2014], show that agents definitely have po-
tential. A usable agent-based interface, however, calls for very sophisticated mental
model fine-tuning. From an organizational perspective, such fine-tuning projects call
for computer scientists and artificial intelligence specialists who can develop smarter
systems, social psychologists who know all kinds of self-presentation techniques, de-
signers who can build these techniques into their characters, and usability researchers
who can test the correctness of the formed mental model with users. Arguably, only
such a multidisciplinary team can bring about a paradigm shift from graphical user
interfaces to agent-based interfaces.
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APPENDIX

The following tables display the results of the mixed regressions used to measure the
effect of cues on humanlike and capability-exploiting responses. Contrast “CuesHum”
tests the “humanlike appearance cues” and “humanlike appearance and capability
cues” conditions against the “computer-like cues” condition. Contrast “CuesCap” tests
the “humanlike appearance and capability cues” condition against the “humanlike
appearance cues” condition. All variables are centered, so main effects are interpretable
regardless of interaction effects. Moreover, note that all tests are performed in the “high
capabilities” conditions only.

REGRESSION A: FIRST PERSON REFERENCES

A mixed Poisson regression on the number of first-person references, with task number
(both linear and squared) and cues as predictors.

Variable Estimate Stand. Error z-value p-value
Intercept −2.37 0.492 −4.81 <0.001
CuesHum 1.86 0.806 2.31 0.021
CuesCap 0.90 0.795 1.13 0.258
Task −0.14 0.070 −2.05 0.040
CuesHum ∗ Task 0.42 0.193 2.19 0.029
CuesCap ∗ Task 0.02 0.094 0.17 0.863
Task2 0.26 0.122 2.12 0.034
CuesHum ∗ Task2 −0.28 0.324 −0.87 0.385
CuesCap ∗ Task2 −0.08 0.198 −0.39 0.696
Random effect (standard deviation):
Intercept 2.07 χ2(1) = 115.39 <.001

REGRESSION B: WORDS PER CHAT REQUEST

A mixed Linear regression on the number of words per chat request, with task number
(both linear and squared) and cues as predictors.

Variable Estimate Stand. Error t-value p-value
Intercept 8.00 0.681 11.74 <0.001
CuesHum 4.22 1.439 2.93 0.005
CuesCap 1.56 1.676 0.93 0.355
Task 0.31 0.088 3.52 <0.001
CuesHum ∗ Task 0.35 0.186 1.89 0.060
CuesCap ∗ Task 0.18 0.217 0.82 0.412
Task2 0.95 0.197 4.83 <0.001
CuesHum ∗ Task2 0.29 0.416 0.69 0.491
CuesCap ∗ Task2 0.93 0.484 1.92 0.056
Random-effect (standard deviation):
Intercept 5.010 χ2(1) = 162.87 <0.001

REGRESSION C: GRAMMATICAL CORRECTNESS

A mixed Nominal regression on the grammatical correctness, with task number (both
linear and squared) and cues as predictors.
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Variable Estimate Stand. Error z-value p-value
Intercept 1.34 1.194 1.12 0.263
CuesHum 10.88 4.327 2.51 0.012
CuesCap 0.22 2.413 0.09 0.926
Task −0.43 0.168 −2.55 0.011
CuesHum ∗ Task −0.22 0.299 −0.74 0.458
CuesCap ∗ Task −0.08 0.377 −0.21 0.835
Task2 −0.05 0.295 −0.17 0.866
CuesHum ∗ task2 −1.09 0.651 −1.68 0.093
CuesCap ∗ task2 0.45 0.738 −0.61 0.544
Random effect (standard deviation):
Intercept 6.15 χ2(1) = 120.01 <0.001

REGRESSION D: CAPABILITY-EXPLOITING RESPONSES

A mixed Linear regression on the number of capability-exploiting responses used (con-
nectedness + context of date + context of time + context of place + multiple questions),
with task number (both linear and squared) and cues as predictors.

Variable Estimate Stand. Error t-value p-value
Intercept 2.23 0.095 23.71 <0.001
CuesHum 0.49 0.202 2.42 0.019
CuesCap 0.17 0.235 0.73 0.466
Task 0.01 0.022 0.61 0.539
CuesHum ∗ Task 0.05 0.046 1.09 0.278
CuesCap ∗ Task −0.05 0.054 −0.94 0.351
Task2 −0.34 0.048 −7.06 <0.001
CuesHum ∗ Task2 −0.07 0.103 −0.64 0.520
CuesCap ∗ Task2 0.08 0.120 0.69 0.491
Random-effect variance and covariance term(s):
Intercept 0.62 χ2(1) = 46.95 <0.001
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